IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v40y2014icp930-943.html
   My bibliography  Save this article

A review of biomass co-firing in North America

Author

Listed:
  • Agbor, Ezinwa
  • Zhang, Xiaolei
  • Kumar, Amit

Abstract

Biomass fuels have long been accepted as useful renewable energy sources, especially in mitigating greenhouse gases (GHG), nitrogen oxides, and sulfur oxide emissions. Biomass fuel is carbon neutral and is usually low in both nitrogen and sulfur. For the past decade, various forms of biomass fuels have been co-combusted in existing coal-fired boilers and gas-fired power plants. Biomass is used as a supplemental fuel to substitute for up to 10% of the base fuel in most full commercial operations. There are several successful co-firing projects in many parts of the world, particularly in Europe and North America. However, despite remarkable commercial success in Europe, most of the biomass co-firing in North America is limited to demonstration levels. This review takes a detailed look at several aspects of biomass co-firing with a direct focus on North America. It also explores the benefits, such as the reduction of GHG emissions and its implications. This paper shows the results of our studies of the biomass resources available in North America that can be used in coal-fired boilers, their availability and transportation to the power plant, available co-firing levels and technologies, and various technological and environmental issues associated with biomass co-firing. Finally, the paper proffers solutions to help utility companies explore biomass co-firing as a transitional option towards a completely carbon-free power sector in North America.

Suggested Citation

  • Agbor, Ezinwa & Zhang, Xiaolei & Kumar, Amit, 2014. "A review of biomass co-firing in North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 930-943.
  • Handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:930-943
    DOI: 10.1016/j.rser.2014.07.195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114006558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Rodrigues, Monica & Walter, Arnaldo & Faaij, André, 2003. "Co-firing of natural gas and Biomass gas in biomass integrated gasification/combined cycle systems," Energy, Elsevier, vol. 28(11), pages 1115-1131.
    3. Basu, Prabir & Butler, James & Leon, Mathias A., 2011. "Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants," Renewable Energy, Elsevier, vol. 36(1), pages 282-288.
    4. Scarlat, Nicolae & Dallemand, Jean-Francois & Skjelhaugen, Odd Jarle & Asplund, Dan & Nesheim, Lars, 2011. "An overview of the biomass resource potential of Norway for bioenergy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3388-3398, September.
    5. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    6. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
    3. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    4. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    5. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    6. Agar, David A. & Rudolfsson, Magnus & Lavergne, Simon & Melkior, Thierry & Da Silva Perez, Denilson & Dupont, Capucine & Campargue, Matthieu & Kalén, Gunnar & Larsson, Sylvia H., 2021. "Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing," Renewable Energy, Elsevier, vol. 178(C), pages 766-774.
    7. Miedema, Jan H. & Benders, René M.J. & Moll, Henri C. & Pierie, Frank, 2017. "Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant," Applied Energy, Elsevier, vol. 187(C), pages 873-885.
    8. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    9. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    10. Luis Puigjaner & Mar Pérez-Fortes & José M. Laínez-Aguirre, 2015. "Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach," Energies, MDPI, vol. 8(6), pages 1-48, June.
    11. Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    12. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    13. Sermyagina, Ekaterina & Saari, Jussi & Zakeri, Behnam & Kaikko, Juha & Vakkilainen, Esa, 2015. "Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant," Applied Energy, Elsevier, vol. 149(C), pages 24-34.
    14. Wu, Dongyin & Wang, Yuhao & Wang, Yang & Li, Sen & Wei, Xiaolin, 2016. "Release of alkali metals during co-firing biomass and coal," Renewable Energy, Elsevier, vol. 96(PA), pages 91-97.
    15. Laphirattanakul, Ponepen & Charoensuk, Jarruwat & Turakarn, Chinnapat & Kaewchompoo, Chatchalerm & Suksam, Niwat, 2020. "Development of pulverized biomass combustor with a pre-combustion chamber," Energy, Elsevier, vol. 208(C).
    16. Jian Cheng & Min Xie & Li Xu & Lei Zhang & Xiaohan Ren, 2021. "Chlorine Release from Co-Pyrolysis of Corn Straw and Lignite in Nitrogen and Oxidative Pyrolysis," Energies, MDPI, vol. 14(24), pages 1-15, December.
    17. Milićević, Aleksandar & Belošević, Srdjan & Crnomarković, Nenad & Tomanović, Ivan & Tucaković, Dragan, 2020. "Mathematical modelling and optimisation of lignite and wheat straw co-combustion in 350 MWe boiler furnace," Applied Energy, Elsevier, vol. 260(C).
    18. Symonds, Robert T. & Hughes, Robin W. & De Las Obras Loscertales, Margarita, 2020. "Oxy-pressurized fluidized bed combustion: Configuration and options analysis," Applied Energy, Elsevier, vol. 262(C).
    19. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    20. Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:930-943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.