Author
Listed:
- Naseem, Kashif
- Khalid, Faryal
- Fei, Qin
- Suo, Guoquan
- Khan, Ali Abbas
- Jabeen, Tabinda
- Karamat, Shumalia
- Shah, Basit Ali
Abstract
The escalating energy challenges and their adverse environmental repercussions have stimulated researchers to explore renewable and sustainable energy sources instead of conventional fossil fuels. Hydrolysis or water splitting has been recognized as efficient comparative to fossil fuels because of the high energy density carrier and environmentally friendly nature. Many hydrolytic materials have been explored but still facing challenges such as sluggish hydrogen kinetics, formation of surface passivation layers and low yield. Hydrolysis of metals has been thoroughly investigated for the production of hydrogen due to its versatile properties, like safe storage and effective supply of hydrogen in a sustainable manner. A variety of methods have been proposed to improve the efficiency, including alloying, changing aqueous solutions, structure of material, and composite formation, however, there is a pressing need to create affordable and environment-friendly materials which is lacking. The current review provides a comprehensive evaluation of recent research contributions of carbonaceous materials for hydrogen generation, particularly their potential as a catalyst for Mg-based materials hydrolysis. Carbon-based materials have abundance, cost-effectiveness, chemical stability, attractive band structure, and easy preparation methods making them an ideal catalytic candidate for metal hydrolysis. Graphene, graphene oxide, carbon nanotubes, carbide and carbon-based composite are employed as catalysts for Mg-based materials hydrolysis. The goal of this study is to inspire readers to research the environmentally friendly production of hydrogen using carbon-based materials.
Suggested Citation
Naseem, Kashif & Khalid, Faryal & Fei, Qin & Suo, Guoquan & Khan, Ali Abbas & Jabeen, Tabinda & Karamat, Shumalia & Shah, Basit Ali, 2025.
"Role of carbon-based materials to promote the hydrolysis performance of magnesium-based materials,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
Handle:
RePEc:eee:rensus:v:219:y:2025:i:c:s1364032125005374
DOI: 10.1016/j.rser.2025.115864
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:219:y:2025:i:c:s1364032125005374. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.