IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v215y2025ics1364032125002989.html
   My bibliography  Save this article

Machine learning for predicting urban greenhouse gas emissions: A systematic literature review

Author

Listed:
  • Jin, Yukai
  • Sharifi, Ayyoob

Abstract

Greenhouse gases play a crucial role in shaping urban climate patterns and dynamics. Using machine learning methods offers opportunities for predicting greenhouse gas emissions in cities, both now and in the future. Here, we review 75 papers from 2003 to 2023 that utilized machine learning to forecast urban greenhouse gas emissions. We focus on two aspects: the models used and the driving factors of emissions. Across all models, R2 range from 0.5231 to 0.9989, MAPE range from 0.3017 % to 26.3 %.Hybrid and neural network models emerged as the most popular choices. The most common combinations were spatial hybrid models, primarily blending spatial models with machine learning predictions. Time series hybrid models mostly featured optimized models and machine learning prediction models. Hybrid models outperform single models in both R2 and MAPE. We propose three key recommendations to enhance the accuracy and reliability of future machine learning models: 1) Establish criteria for evaluating influential factors and model selection, 2) Enhance spatial prediction in machine learning by optimization models, and 3) Explore and compare how greenhouse gas prediction models perform across diverse urban settings.

Suggested Citation

  • Jin, Yukai & Sharifi, Ayyoob, 2025. "Machine learning for predicting urban greenhouse gas emissions: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:rensus:v:215:y:2025:i:c:s1364032125002989
    DOI: 10.1016/j.rser.2025.115625
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125002989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Catherine C. Ivanovich & Tianyi Sun & Doria R. Gordon & Ilissa B. Ocko, 2023. "Future warming from global food consumption," Nature Climate Change, Nature, vol. 13(3), pages 297-302, March.
    2. Angel Hsu & Xuewei Wang & Jonas Tan & Wayne Toh & Nihit Goyal, 2022. "Predicting European cities’ climate mitigation performance using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
    4. Liu, Xiaoping & Ou, Jinpei & Chen, Yimin & Wang, Shaojian & Li, Xia & Jiao, Limin & Liu, Yaolin, 2019. "Scenario simulation of urban energy-related CO2 emissions by coupling the socioeconomic factors and spatial structures," Applied Energy, Elsevier, vol. 238(C), pages 1163-1178.
    5. Fei Ye & Xinxiu Xie & Li Zhang & Xiaoling Hu, 2018. "An Improved Grey Model and Scenario Analysis for Carbon Intensity Forecasting in the Pearl River Delta Region of China," Energies, MDPI, vol. 11(1), pages 1-16, January.
    6. Aboagye, Prince Dacosta & Sharifi, Ayyoob, 2024. "Urban climate adaptation and mitigation action plans: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Zhifu Mi & Dabo Guan & Zhu Liu & Jingru Liu & Vincent Viguié & Neil Fromer & Yutao Wang, 2019. "Cities: The core of climate change mitigation," Post-Print hal-04501731, HAL.
    8. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    9. Laura Goulier & Bastian Paas & Laura Ehrnsperger & Otto Klemm, 2020. "Modelling of Urban Air Pollutant Concentrations with Artificial Neural Networks Using Novel Input Variables," IJERPH, MDPI, vol. 17(6), pages 1-22, March.
    10. David Bell & Mark Jayne, 2009. "Small Cities? Towards a Research Agenda," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 33(3), pages 683-699, September.
    11. Yu Qian Ang & Zachary Michael Berzolla & Samuel Letellier-Duchesne & Christoph F. Reinhart, 2023. "Carbon reduction technology pathways for existing buildings in eight cities," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Hung-Ta Wen & Jau-Huai Lu & Deng-Siang Jhang, 2021. "Features Importance Analysis of Diesel Vehicles’ NO x and CO 2 Emission Predictions in Real Road Driving Based on Gradient Boosting Regression Model," IJERPH, MDPI, vol. 18(24), pages 1-28, December.
    13. Zheng Jiang & Shuohua Zhang & Wei Li, 2022. "Exploration of Urban Emission Mitigation Pathway under the Carbon Neutrality Target: A Case Study of Beijing, China," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    14. Haijing Tang & Xu Yang & Yanjun Zhang, 2014. "Effort at Constructing Big Data Sensor Networks for Monitoring Greenhouse Gas Emission," International Journal of Distributed Sensor Networks, , vol. 10(7), pages 619608-6196, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingxin Li & Qiang Zheng & Xue Jiang & Chennan He, 2024. "Multi-Scale Spatial Structure Impacts on Carbon Emission in Cold Region: Case Study in Changchun, China," Sustainability, MDPI, vol. 17(1), pages 1-33, December.
    2. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    3. Cai, Angzu & Wang, Leyi & Zhang, Yuhao & Wu, Haoran & Zhang, Huai & Guo, Ru & Wu, Jiang, 2025. "Uncovering the multiple socio-economic driving factors of carbon emissions in nine urban agglomerations of China based on machine learning," Energy, Elsevier, vol. 319(C).
    4. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    5. Alexander C. Abajian & Tamma Carleton & Kyle C. Meng & Olivier Deschênes, 2025. "Quantifying the global climate feedback from energy-based adaptation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    6. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    7. Mostafa Bigdeli & Mahsa Akbari, 2024. "Machine-learning-based Classification of Customers’ Behavioural Model in Instagram," Paradigm, , vol. 28(2), pages 223-240, December.
    8. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
    9. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    10. Ayala, Néstor Fabián & Rodrigues da Silva, Jassen & Cannarozzo Tinoco, Maria Auxiliadora & Saccani, Nicola & Frank, Alejandro G., 2025. "Artificial Intelligence capabilities in Digital Servitization: Identifying digital opportunities for different service types," International Journal of Production Economics, Elsevier, vol. 284(C).
    11. Alt, Marius & Gallier, Carlo & Kesternich, Martin & Sturm, Bodo, 2023. "Collective minimum contributions to counteract the ratchet effect in the voluntary provision of public goods," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    12. Heleen L. Soest & Lara Aleluia Reis & Luiz Bernardo Baptista & Christoph Bertram & Jacques Després & Laurent Drouet & Michel Elzen & Panagiotis Fragkos & Oliver Fricko & Shinichiro Fujimori & Neil Gra, 2022. "Author Correction: Global roll-out of comprehensive policy measures may aid in bridging emissions gap," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    13. Najla Alharbi & Bashayer Alkalifah & Ghaida Alqarawi & Murad A. Rassam, 2024. "Countering Social Media Cybercrime Using Deep Learning: Instagram Fake Accounts Detection," Future Internet, MDPI, vol. 16(10), pages 1-22, October.
    14. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    15. Thananya Janhuaton & Vatanavongs Ratanavaraha & Sajjakaj Jomnonkwao, 2024. "Forecasting Thailand’s Transportation CO 2 Emissions: A Comparison among Artificial Intelligent Models," Forecasting, MDPI, vol. 6(2), pages 1-23, June.
    16. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    17. Roberto Cascante-Yarlequé & Purificación Galindo-Villardón & Fabricio Guevara-Viejó & José Luis Vicente-Villardón & Purificación Vicente-Galindo, 2025. "HJ-BIPLOT : A Theoretical and Empirical Systematic Review of Its 38 Years of History, Using Text Mining and LLMs," Mathematics, MDPI, vol. 13(12), pages 1-35, June.
    18. Rahman, Fabiha & Oliver, Robert & Buehler, Ralph & Lee, Jinhyung & Crawford, Thomas & Kim, Junghwan, 2025. "Impacts of point of interest (POI) data selection on 15-Minute City (15-MC) accessibility scores and inequality assessments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 195(C).
    19. Loris Servillo & Rob Atkinson & Abdelillah Hamdouch & Loris Servillo & Antonio Paolo Russo, 2017. "Spatial Trends of Towns in Europe: The Performance of Regions with Low Degree of Urbanisation," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 108(4), pages 403-423, September.
    20. Shizhao Zhang & Shuzhi Wang & Jiayong Zhang & Bao Wang & Hui Wang & Liwei Liu & Chong Cao & Muyang Shi & Yuhan Liu, 2025. "Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis," Energies, MDPI, vol. 18(11), pages 1-31, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:215:y:2025:i:c:s1364032125002989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.