IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v212y2025ics1364032125000462.html
   My bibliography  Save this article

Recent trends in thermal energy storage for enhanced solar still performance

Author

Listed:
  • S, Shankaranarayanan
  • Murugan, Deepak Kumar

Abstract

Solar distillation stands as a crucial technology amidst growing global water scarcity, offering a sustainable means of producing fresh water. However, its effectiveness is constrained by its dependency on diurnal solar energy, resulting in limited daily yields—typically around 3 L/m2. This limitation arises primarily from the inability to consistently harness solar energy throughout the entire day. Recent advancements in material science have introduced sophisticated heat storage mediums capable of capturing excess solar energy during peak sunlight hours and releasing it during non-solar periods, thereby sustaining nocturnal distillation processes and enhancing overall productivity. This review provides a comprehensive evaluation of the latest developments in heat storage technologies for solar still applications, with a focus on both sensible and latent heat storage strategies. By critically assessing their performance, this review not only highlights the advantages and limitations of current approaches but also identifies key areas for future research. The insights gained aim to drive the advancement of solar distillation systems, fostering greater efficiency and expanding their applicability in both domestic and industrial contexts. This study aligns with SDG 6 by exploring innovative thermal energy storage systems that enhance the efficiency and productivity of solar distillation, providing a sustainable solution for clean water access and SDG 13 through environmental friendly water purification technologies.

Suggested Citation

  • S, Shankaranarayanan & Murugan, Deepak Kumar, 2025. "Recent trends in thermal energy storage for enhanced solar still performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000462
    DOI: 10.1016/j.rser.2025.115373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125000462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Panchal, Hitesh N. & Patel, Sanjay, 2017. "An extensive review on different design and climatic parameters to increase distillate output of solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 750-758.
    2. Olivkar, Piyush R. & Katekar, Vikrant P. & Deshmukh, Sandip S. & Palatkar, Sanyukta V., 2022. "Effect of sensible heat storage materials on the thermal performance of solar air heaters: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Modi, Kalpesh V. & Nayi, Kuldeep H., 2020. "Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still," Renewable Energy, Elsevier, vol. 153(C), pages 1307-1319.
    4. Khalilmoghadam, Pooria & Rajabi-Ghahnavieh, Abbas & Shafii, Mohammad Behshad, 2021. "A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe," Renewable Energy, Elsevier, vol. 163(C), pages 2115-2127.
    5. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    6. Dhivagar, Ramasamy & Shoeibi, Shahin & Parsa, Seyed Masoud & Hoseinzadeh, Siamak & Kargarsharifabad, Hadi & Khiadani, Mehdi, 2023. "Performance evaluation of solar still using energy storage biomaterial with porous surface: An experimental study and environmental analysis," Renewable Energy, Elsevier, vol. 206(C), pages 879-889.
    7. Dsilva Winfred Rufuss, D. & Arulvel, S. & Anil Kumar, V. & Davies, P.A. & Arunkumar, T. & Sathyamurthy, Ravishankar & Kabeel, A.E. & Anand Vishwanath, M. & Sai Charan Reddy, D. & Dutta, Amandeep & Agr, 2022. "Combined effects of composite thermal energy storage and magnetic field to enhance productivity in solar desalination," Renewable Energy, Elsevier, vol. 181(C), pages 219-234.
    8. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Grewal, Rahul & Kumar, Mahesh, 2022. "Performance evaluation of a concatenated stepped solar still system loaded with different masses of energy storage material," Energy, Elsevier, vol. 259(C).
    10. Collado-Capell, Carlos & Menon, Akanksha K., 2024. "Performance modeling and cost optimization of a solar desalination system using forward osmosis with energy storage," Renewable Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudio Zilio & Giulia Righetti & Dario Guarda & Francesca Martelletto & Simone Mancin, 2025. "A Comparative Experimental Analysis of a Cold Latent Thermal Storage System Coupled with a Heat Pump/Air Conditioning Unit," Energies, MDPI, vol. 18(13), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelgaied, Mohamed & Kabeel, A.E., 2021. "Performance improvement of pyramid solar distillers using a novel combination of absorber surface coated with CuO nano black paint, reflective mirrors, and PCM with pin fins," Renewable Energy, Elsevier, vol. 180(C), pages 494-501.
    2. Jamil, Furqan & Hassan, Faisal & Shoeibi, Shahin & Khiadani, Mehdi, 2023. "Application of advanced energy storage materials in direct solar desalination: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    3. Han, Jingyang & Ji, Xu & Xu, Haiyang & Heng, Yuanyuan & Wang, Cong & Deng, Jia, 2020. "Solar vaporizing desalination by heat concentration," Renewable Energy, Elsevier, vol. 154(C), pages 201-208.
    4. Prakash, Ajay & Kumar, Mahesh, 2025. "Experimental investigations on simple and modified concatenated stepped solar still units for the extraction of clean water: A comparative study," Renewable Energy, Elsevier, vol. 238(C).
    5. Xu, H.J. & Han, X.C. & Hua, W.S. & Friedrich, D. & Santori, G. & Bevan, E. & Vafai, K. & Wang, F.Q. & Zhang, X.L. & Yu, G.J. & Xu, H.F., 2025. "Progress on thermal storage technologies with high heat density in renewables and low carbon applications: Latent and thermochemical energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    6. Wei, Xinyu & Zheng, Qingwen & Chen, Wenlong & Xie, Guo & Li, Yadong & Gao, Fengsheng & Liu, Yingzhang & Wang, Wenquan, 2024. "Pyramid floating solar still with enhanced condensation surfaces operating under actual weather conditions," Renewable Energy, Elsevier, vol. 237(PA).
    7. Chen, Yingxu & Ji, Xu & Yang, Bianfeng & Jia, Yicong & Wang, Mengqi, 2024. "Performance enhancement of compound parabolic concentrating vaporized desalination system by spraying and steam heat recovery," Renewable Energy, Elsevier, vol. 220(C).
    8. Arunkumar, T. & Lim, Hyeong Woo & Lee, Sang Joon, 2022. "A review on efficiently integrated passive distillation systems for active solar steam evaporation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Milad Setareh & Mohammad Reza Assari & Hassan Basirat Tabrizi & Mohammad Alizadeh, 2024. "Performance of a stepped solar still using porous materials experimentally," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28519-28538, November.
    10. Hilarydoss Sharon & Mansi Prasad & Lakkoju Gowtham & Putta Venu Gopal & S. Aswin, 2025. "Techno–Enviro–Economic Feasibility Assessment of Family-Scale Solar Still (F-SSS) Desalination Plant in Central American and Caribbean Sites for Sustainable Clean Water Supply," Energies, MDPI, vol. 18(6), pages 1-39, March.
    11. Sun, Xiaoqin & Lin, Yian & Zhu, Ziyang & Li, Jie, 2022. "Optimized design of a distributed photovoltaic system in a building with phase change materials," Applied Energy, Elsevier, vol. 306(PA).
    12. A. Muthu Manokar & M. Vimala & Ravishankar Sathyamurthy & A. E. Kabeel & D. Prince Winston & Ali J. Chamkha, 2020. "Enhancement of potable water production from an inclined photovoltaic panel absorber solar still by integrating with flat-plate collector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4145-4167, June.
    13. He Fu & Min Dai & Hanwen Song & Xiaoting Hou & Fahid Riaz & Shuai Li & Ke Yang & Imran Ali & Changsheng Peng & Muhammad Sultan, 2021. "Updates on Evaporation and Condensation Methods for the Performance Improvement of Solar Stills," Energies, MDPI, vol. 14(21), pages 1-26, October.
    14. Hua, Yifang & Peng, Qinghua & Zhang, Jingfan & Gu, Weiwen & Zhang, Jingyu & Sun, Jun & Gu, Xiaoyu & Wang, Haiqiao & Zhang, Sheng, 2025. "Influence of amine curing agents on phase change performance in developing flame-retardant thermal management epoxy composites," Energy, Elsevier, vol. 328(C).
    15. Arunkumar, T. & Wang, Jiaqiang & Denkenberger, D., 2021. "Capillary flow-driven efficient nanomaterials for seawater desalination: Review of classifications, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Chen, Yingxu & Ji, Xu & Lv, Guanchao & Jia, Yicong & Yang, Bianfeng & Han, Jingyang, 2023. "Study on compound parabolic concentrating vaporized desalination system with preheating and heat recovery," Energy, Elsevier, vol. 276(C).
    17. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    18. Oh, Jinwoo & Han, Ukmin & Jung, Yujun & Kang, Yong Tae & Lee, Hoseong, 2024. "Advancing waste heat potential assessment for net-zero emissions: A review of demand-based thermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    19. Lee, Ga-Ram & Park, Chang-Dae & Lim, Hyuneui & Cho, Sung-Hoon & Choi, Seok-Min & Lim, Byung-Ju, 2023. "Performance enhancement of a diffusion-type solar still: Wettability and flowability of condensation surface," Renewable Energy, Elsevier, vol. 209(C), pages 277-285.
    20. Sebastian, Geo & Thomas, Shijo, 2021. "Influence of providing a three-layer spectrally selective floating absorber on passive single slope solar still productivity under tropical conditions," Energy, Elsevier, vol. 214(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.