IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v211y2025ics1364032124010207.html
   My bibliography  Save this article

Assessment of gains in productivity and water-energy-carbon nexus with tillage, trash retention and fertigation practices in drip irrigated sugarcane

Author

Listed:
  • Wakchaure, G.C.
  • Minhas, P.S.
  • Biswas, A.K.
  • Meena, Kamlesh K.
  • Pradhan, Aliza
  • Gawhale, B.J.
  • Choudhary, R.L.
  • Kumar, Satish
  • Fagodiya, Ram K.
  • Reddy, K. Sammi
  • Pathak, H.

Abstract

Sugarcane is a major contributor to bioenergy production in India and its share is expected to rise further. However, the productivity of sugarcane is not only low, but it is also water-energy-carbon extensive. To work out energy and emission-centric strategies, effects of conservation agriculture-based tillage, surface trash retention, and nutrient management were monitored in drip irrigated sugarcane experiment (2016–22). Six treatments imposed on the plant crop consisted of: three tillage levels viz., CT (conventional tillage i.e. sub-soiling plus cultivating twice followed by rotovator), RT1 (reduced tillage cultivating twice) and RT2 (reduced tillage single cultivation) before preparing ridges for planting in main-plots and two trash management practices viz., M (trash mulching) and NM (non-mulching) in subplots. RT2 and RT1 rather increased plant crop productivity by 13.3 % and 8.2 % over CT, while the increase with M was 5.3, 7.9, and 10.1 %, respectively under CT, RT1 and RT2. The sub-sub plots for the following four ratoon crops included three modes of nutrient management as varied using both a multi-functional (stubble shaving, off-barring, root pruning and band placement of fertilisers) ratoon drill (MRD) for basal dose and fertigation with drippers during crop growth. These consisted of: N1 (25 % recommended fertilisers, RDF as basal and rest through fertigation); N2 (50 % with MRD and 50 % with fertigation) and N3 (75 % with MRD and 25 % with fertigation). RT2+ M + N2 enhanced tillers, cane weight, size matrices, juice quality and produced 45.4 % higher cane yield of ratoon crops compared with CT + NM + N1 (farmers practice). This reduced the yield gap from 38 to 8 % between plant and ratoon crops via its superior water productivity (16.4 kg m−3), partial factor productivity (518.1 kg N kg−1), and reduced water footprint (54.0 l kg−1). The energy consumption during ratoon crops (40.4–50.5 GJ ha−1) was considerably lesser than the plant crop (74.6–87.7 GJ ha−1). Similarly, GHG emissions monitored were 6522–7487 and 9001–10421 kg CO2-eq ha−1 during ratoon and plant crop, respectively. Reduced tillage in ratoons improved energy use efficiency (33.7–56.3 %), net energy (26.3–46.7 %) and reduced GHGs emissions by 3.6–12.9 % compared to CT + NM + N1. This enhanced carbon sequestration by 65.5–73.1 % and reduced carbon footprint by 72–88 %. Thus, integrating reduced tillage, trash retention and appropriate fertigation practices has a potential to improve sugarcane productivity vis-a-vis profitability, and sustain soil and environmental quality in sugarcane production systems, as prevalent in water scarcities regions.

Suggested Citation

  • Wakchaure, G.C. & Minhas, P.S. & Biswas, A.K. & Meena, Kamlesh K. & Pradhan, Aliza & Gawhale, B.J. & Choudhary, R.L. & Kumar, Satish & Fagodiya, Ram K. & Reddy, K. Sammi & Pathak, H., 2025. "Assessment of gains in productivity and water-energy-carbon nexus with tillage, trash retention and fertigation practices in drip irrigated sugarcane," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124010207
    DOI: 10.1016/j.rser.2024.115294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124010207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115294?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wakchaure, G.C. & Minhas, P.S. & Kumar, Satish & Khapte, P.S. & Dalvi, S.G. & Rane, J. & Reddy, K. Sammi, 2023. "Pod quality, yields responses and water productivity of okra (Abelmoschus esculentus L.) as affected by plant growth regulators and deficit irrigation," Agricultural Water Management, Elsevier, vol. 282(C).
    2. Ravikumar, V. & Vijayakumar, G. & Simunek, J. & Chellamuthu, S. & Santhi, R. & Appavu, K., 2011. "Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1431-1440, July.
    3. Turmel, Marie-Soleil & Speratti, Alicia & Baudron, Frédéric & Verhulst, Nele & Govaerts, Bram, 2015. "Crop residue management and soil health: A systems analysis," Agricultural Systems, Elsevier, vol. 134(C), pages 6-16.
    4. Chaudhary, V.P. & Singh, K.K. & Pratibha, G. & Bhattacharyya, Ranjan & Shamim, M. & Srinivas, I. & Patel, Anurag, 2017. "Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation," Energy, Elsevier, vol. 130(C), pages 307-317.
    5. Yadav, Gulab Singh & Das, Anup & Kandpal, B K & Babu, Subhash & Lal, Rattan & Datta, Mrinmoy & Das, Biswajit & Singh, Raghavendra & Singh, VK & Mohapatra, KP & Chakraborty, Mandakranta, 2021. "The food-energy-water-carbon nexus in a maize-maize-mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Parihar, C.M. & Jat, S.L. & Singh, A.K. & Kumar, B. & Rathore, N.S. & Jat, M.L. & Saharawat, Y.S. & Kuri, B.R., 2018. "Energy auditing of long-term conservation agriculture based irrigated intensive maize systems in semi-arid tropics of India," Energy, Elsevier, vol. 142(C), pages 289-302.
    7. Sandhu, O.S. & Gupta, R.K. & Thind, H.S. & Jat, M.L. & Sidhu, H.S. & Yadvinder-Singh,, 2019. "Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India," Agricultural Water Management, Elsevier, vol. 219(C), pages 19-26.
    8. Singh, Ranbir & Singh, Ajay & Sheoran, Parvender & Fagodiya, R.K. & Rai, Arvind Kumar & Chandra, Priyanka & Rani, Sonia & Yadav, Rajender Kumar & Sharma, P.C., 2022. "Energy efficiency and carbon footprints of rice-wheat system under long-term tillage and residue management practices in western Indo-Gangetic Plains in India," Energy, Elsevier, vol. 244(PA).
    9. Choudhary, Mukesh & Rana, K.S. & Bana, R.S. & Ghasal, P.C. & Choudhary, G.L. & Jakhar, Praveen & Verma, R.K., 2017. "Energy budgeting and carbon footprint of pearl millet – mustard cropping system under conventional and conservation agriculture in rainfed semi-arid agro-ecosystem," Energy, Elsevier, vol. 141(C), pages 1052-1058.
    10. Nazmus Salahin & Mohammad Jahiruddin & Mohammad Rafiqul Islam & Md. Khairul Alam & M. Enamul Haque & Sharif Ahmed & Alaa Baazeem & Adel Hadifa & Ayman EL Sabagh & Richard W. Bell, 2021. "Establishment of Crops under Minimal Soil Disturbance and Crop Residue Retention in Rice-Based Cropping System: Yield Advantage, Soil Health Improvement, and Economic Benefit," Land, MDPI, vol. 10(6), pages 1-18, May.
    11. Parihar, C.M. & Meena, B.R. & Nayak, Hari Sankar & Patra, K. & Sena, D.R. & Singh, Raj & Jat, S.L. & Sharma, D.K. & Mahala, D.M. & Patra, S. & Rupesh, & Rathi, N. & Choudhary, M. & Jat, M.L. & Abdalla, 2022. "Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus," Energy, Elsevier, vol. 254(PB).
    12. Patra, Kiranmoy & Parihar, C.M. & Nayak, H.S. & Rana, Biswajit & Sena, D.R. & Anand, Anjali & Reddy, K. Srikanth & Chowdhury, Manojit & Pandey, Renu & Kumar, Atul & Singh, L.K. & Ghatala, M.K. & Sidhu, 2023. "Appraisal of complementarity of subsurface drip fertigation and conservation agriculture for physiological performance and water economy of maize," Agricultural Water Management, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parihar, C.M. & Meena, B.R. & Nayak, Hari Sankar & Patra, K. & Sena, D.R. & Singh, Raj & Jat, S.L. & Sharma, D.K. & Mahala, D.M. & Patra, S. & Rupesh, & Rathi, N. & Choudhary, M. & Jat, M.L. & Abdalla, 2022. "Co-implementation of precision nutrient management in long-term conservation agriculture-based systems: A step towards sustainable energy-water-food nexus," Energy, Elsevier, vol. 254(PB).
    2. Singh, Ranbir & Singh, Ajay & Sheoran, Parvender & Fagodiya, R.K. & Rai, Arvind Kumar & Chandra, Priyanka & Rani, Sonia & Yadav, Rajender Kumar & Sharma, P.C., 2022. "Energy efficiency and carbon footprints of rice-wheat system under long-term tillage and residue management practices in western Indo-Gangetic Plains in India," Energy, Elsevier, vol. 244(PA).
    3. Barman, Anamika & Pooniya, Vijay & Zhiipao, R.R. & Biswakarma, Niraj & Kumar, Dinesh & Das, T.K. & Shivay, Y.S. & Rathore, S.S. & Das, Kajal & Babu, Subhash & Saikia, Nilutpal & Meena, M.C. & Bhatia, , 2024. "Integrated crop management for long-term sustainability of maize-wheat rotation focusing on productivity, energy and carbon footprints," Energy, Elsevier, vol. 311(C).
    4. Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).
    5. Xi, Min & Xu, Youzun & Zhou, Yongjin & Wu, Chenyang & Tu, Debao & Li, Zhong & Sun, Xueyuan & Wu, Wenge, 2024. "Energy use and carbon footprint in response to the transition from indica rice to japonica rice cropping systems in China," Energy, Elsevier, vol. 299(C).
    6. Kumar, Rakesh & Mishra, J.S. & Mondal, Surajit & Meena, Ram Swaroop & Sundaram, P.K. & Bhatt, B.P. & Pan, R.S. & Lal, Rattan & Saurabh, Kirti & Chandra, Naresh & Samal, S.K. & Hans, Hansraj & Raman, R, 2021. "Designing an ecofriendly and carbon-cum-energy efficient production system for the diverse agroecosystem of South Asia," Energy, Elsevier, vol. 214(C).
    7. Meena, Ram Swaroop & Pradhan, Gourisankar & Kumar, Sandeep & Lal, Rattan, 2023. "Using industrial wastes for rice-wheat cropping and food-energy-carbon-water-economic nexus to the sustainable food system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Kumar, Naman & Bhunia, Snehasish & Dey, Prithwiraj, 2024. "Data envelopment analysis and multi-objective genetic algorithm based optimization of energy consumption and greenhouse gas emissions in rice-wheat system," Energy, Elsevier, vol. 313(C).
    9. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    10. Haomiao Cheng & Qilin Yu & Mohmed A. M. Abdalhi & Fan Li & Zhiming Qi & Tengyi Zhu & Wei Cai & Xiaoping Chen & Shaoyuan Feng, 2022. "RZWQM2 Simulated Drip Fertigation Management to Improve Water and Nitrogen Use Efficiency of Maize in a Solar Greenhouse," Agriculture, MDPI, vol. 12(5), pages 1-14, May.
    11. Tutar, Halit & Eren, Ömer & Er, Hasan & Gonulal, Erdal & Gokdogan, Osman, 2025. "Field-based experimental greenhouse gas emissions and energy use efficiency study of sorghum x sudan grass hybrid growth in a semi-arid region," Energy, Elsevier, vol. 315(C).
    12. Mohammad Mizanur Rahman & Mohammed Zia Uddin Kamal & Senaratne Ranamukhaarachchi & Mohammad Saiful Alam & Mohammad Khairul Alam & Mohammad Arifur Rahman Khan & Mohammad Moshiul Islam & Mohammad Ashraf, 2022. "Effects of Organic Amendments on Soil Aggregate Stability, Carbon Sequestration, and Energy Use Efficiency in Wetland Paddy Cultivation," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
    13. Li, Yong & Šimůnek, Jirka & Zhang, Zhentin & Jing, Longfei & Ni, Lixiao, 2015. "Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 148(C), pages 213-222.
    14. Sushanta Kumar Naik & Santosh Sambhaji Mali & Bal Krishna Jha & Rakesh Kumar & Surajit Mondal & Janki Sharan Mishra & Arun Kumar Singh & Ashis Kumar Biswas & Arbind Kumar Choudhary & Jaipal Singh Chou, 2023. "Intensification of Rice-Fallow Agroecosystem of South Asia with Oilseeds and Pulses: Impacts on System Productivity, Soil Carbon Dynamics and Energetics," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    15. Shekhar, Ankit & Shapiro, Charles A., 2022. "Prospective crop yield and income return based on a retrospective analysis of a long-term rainfed agriculture experiment in Nebraska," Agricultural Systems, Elsevier, vol. 198(C).
    16. Das, Susanta & Kaur, Samanpreet & Sharma, Vivek, 2024. "Determination of threshold crop water stress index for sub-surface drip irrigated maize-wheat cropping sequence in semi-arid region of Punjab," Agricultural Water Management, Elsevier, vol. 301(C).
    17. Gang Zhang & Dejian Wang & Yuanchun Yu, 2020. "Investigation into the Effects of Straw Retention and Nitrogen Reduction on CH 4 and N 2 O Emissions from Paddy Fields in the Lower Yangtze River Region, China," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    18. Gulab Singh Yadav & Rahul Datta & Shamina Imran Pathan & Rattan Lal & Ram Swaroop Meena & Subhash Babu & Anup Das & S. N. Bhowmik & Mrinmoy Datta & Poulami Saha & Pawan Kumar Mishra, 2017. "Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice ( Oryza sativa L.)–Rice System in North Eastern Region of India," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    19. Pradhan, Amaresh & Rana, K.S. & Choudhary, Anil K. & Bana, R.S. & Thapa, Shobit & Dash, Amit K. & Singh, Jyoti P. & Kumar, Amit & Harish, M.N. & Hasanain, Mohammad & Kumar, Adarsh, 2025. "Dual-crop basis residue-retained bed-planting and zinc fertilization lead to improved food-energy-water-carbon nexus in pearl millet-wheat cropping system in semi-arid agro-ecologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    20. Shi, Tao & Liu, Zhi-Hua & Ragauskas, Arthur J. & Yuan, Ying-Jin & Li, Bing-Zhi, 2025. "Versatile lignin valorization drives sustainable agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124010207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.