IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v283y2023ics0378377423001737.html
   My bibliography  Save this article

Appraisal of complementarity of subsurface drip fertigation and conservation agriculture for physiological performance and water economy of maize

Author

Listed:
  • Patra, Kiranmoy
  • Parihar, C.M.
  • Nayak, H.S.
  • Rana, Biswajit
  • Sena, D.R.
  • Anand, Anjali
  • Reddy, K. Srikanth
  • Chowdhury, Manojit
  • Pandey, Renu
  • Kumar, Atul
  • Singh, L.K.
  • Ghatala, M.K.
  • Sidhu, H.S.
  • Jat, M.L.

Abstract

The Indo-Gangetic Plains (IGP) in north-west (NW) India are facing a severe decline in ground water due to prevalent rice-based cropping systems. To combat this issue, conservation agriculture (CA) with an alternative crop/s, such as maize, is being promoted. Recently, surface drip fertigation has also been evaluated as a viable option to address low-nutrient use efficiency and water scarcity problems for cereals. While the individual benefits of CA and sub-surface drip (SSD) irrigation on water economy are well-established, information regarding their combined effect in cereal-based systems is lacking. Therefore, we conducted a two-year field experiment in maize, under an ongoing CA-based maize-wheat system, to evaluate the complementarity of CA with SSD irrigation through two technological interventions–– CA+ (residue retained CA + SSD), PCA+ (partial CA without residue + SSD) – at different N rates (0, 120 and 150 kg N ha-1) in comparison to traditional furrow irrigated (FI) CA and conventional tillage (CT) at 120 kg N ha-1. Our results showed that CA+ had the highest grain yield (8.2 t ha-1), followed by PCA+ (8.1 t ha-1). The grain yield under CA+ at 150 kg N ha-1 was 27% and 30% higher than CA and CT, respectively. Even at the same N level (120 kg N ha-1), CA+ outperformed CA and CT by 16% and 18%, respectively. The physiological performance of maize also revealed that CA+ based plots with 120 kg N ha-1 had 12% and 3% higher photosynthesis rate at knee-high and silking, respectively compared to FI-CA and CT. Overall, compared to the FI-CA and CT, SSD-based CA+ and PCA+ saved 54% irrigation water and increased water productivity (WP) by more than twice. Similarly, a greater number of split N application through fertigation in PCA+ and CA+ increased agronomic nitrogen use efficiency (NUE) and recover efficiency by 8–19% and 14–25%, respectively. Net returns from PCA+ and CA+ at 150 kg N ha-1 were significantly higher by US$ 491 and 456, respectively than the FI-CA and CT treatments. Therefore, CA coupled with SSD provided tangible benefits in terms of yield, irrigation water saving, WP, NUE and profitability. Efforts should be directed towards increasing farmers’ awareness of the benefits of such promising technology for the cultivating food grains and commercial crops such as maize. Concurrently, government support and strict policies are required to enhance the system adaptability.

Suggested Citation

  • Patra, Kiranmoy & Parihar, C.M. & Nayak, H.S. & Rana, Biswajit & Sena, D.R. & Anand, Anjali & Reddy, K. Srikanth & Chowdhury, Manojit & Pandey, Renu & Kumar, Atul & Singh, L.K. & Ghatala, M.K. & Sidhu, 2023. "Appraisal of complementarity of subsurface drip fertigation and conservation agriculture for physiological performance and water economy of maize," Agricultural Water Management, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001737
    DOI: 10.1016/j.agwat.2023.108308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xin & Meng, Fanqiao & Li, Hu & Wang, Ligang & Wu, Shuxia & Xiao, Guangmin & Wu, Wenliang, 2019. "Optimized fertigation maintains high yield and mitigates N2O and NO emissions in an intensified wheat–maize cropping system," Agricultural Water Management, Elsevier, vol. 211(C), pages 26-36.
    2. Muhammad Umair & Tabassum Hussain & Hanbing Jiang & Ayesha Ahmad & Jiawei Yao & Yongqing Qi & Yucui Zhang & Leilei Min & Yanjun Shen, 2019. "Water-Saving Potential of Subsurface Drip Irrigation For Winter Wheat," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    3. Sidhu, H.S. & Jat, M.L. & Singh, Yadvinder & Sidhu, Ravneet Kaur & Gupta, Naveen & Singh, Parvinder & Singh, Pankaj & Jat, H.S. & Gerard, Bruno, 2019. "Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency," Agricultural Water Management, Elsevier, vol. 216(C), pages 273-283.
    4. Çetin, Oner & Kara, Abdurrahman, 2019. "Assesment of water productivity using different drip irrigation systems for cotton," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Sandhu, O.S. & Gupta, R.K. & Thind, H.S. & Jat, M.L. & Sidhu, H.S. & Yadvinder-Singh,, 2019. "Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India," Agricultural Water Management, Elsevier, vol. 219(C), pages 19-26.
    6. Wan, Xuejie & Wu, Wei & Liao, Yuncheng, 2021. "Mitigating ammonia volatilization and increasing nitrogen use efficiency through appropriate nitrogen management under supplemental irrigation and rain–fed condition in winter wheat," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Wu, Dali & Xu, Xinxing & Chen, Yanling & Shao, Hui & Sokolowski, Eldad & Mi, Guohua, 2019. "Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China," Agricultural Water Management, Elsevier, vol. 213(C), pages 200-211.
    8. Li, Haoru & Mei, Xurong & Wang, Jiandong & Huang, Feng & Hao, Weiping & Li, Baoguo, 2021. "Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China," Agricultural Water Management, Elsevier, vol. 244(C).
    9. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    10. Ali Ajaz & Sumon Datta & Scott Stoodley, 2020. "High Plains Aquifer–State of Affairs of Irrigated Agriculture and Role of Irrigation in the Sustainability Paradigm," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    11. Mohammed, Ali T. & Irmak, Suat, 2022. "Maize response to coupled irrigation and nitrogen fertilization under center pivot, subsurface drip and surface (furrow) irrigation: Soil-water dynamics and crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 267(C).
    12. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng, 2016. "Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition?," Agricultural Water Management, Elsevier, vol. 177(C), pages 128-137.
    13. Irmak, Suat & Mohammed, Ali T. & Kukal, Meetpal S., 2022. "Maize response to coupled irrigation and nitrogen fertilization under center pivot, subsurface drip and surface (furrow) irrigation: Growth, development and productivity," Agricultural Water Management, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Leghari, Shah Jahan & Hu, Kelin & Wei, Yichang & Wang, Tongchao & Bhutto, Tofique Ahmed & Buriro, Mahmooda, 2021. "Modelling water consumption, N fates and maize yield under different water-saving management practices in China and Pakistan," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Irmak, Suat & Mohammed, Ali T. & Drudik, Matthew, 2023. "Maize nitrogen uptake, grain nitrogen concentration and root-zone residual nitrate nitrogen response under center pivot, subsurface drip and surface (furrow) irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Wang, Yahui & Li, Sien & Qin, Shujing & Guo, Hui & Yang, Danni & Lam, Hon-Ming, 2020. "How can drip irrigation save water and reduce evapotranspiration compared to border irrigation in arid regions in northwest China," Agricultural Water Management, Elsevier, vol. 239(C).
    6. Wang, Tianyu & Wang, Zhenhua & Guo, Li & Zhang, Jinzhu & Li, Wenhao & He, Huaijie & Zong, Rui & Wang, Dongwang & Jia, Zhecheng & Wen, Yue, 2021. "Experiences and challenges of agricultural development in an artificial oasis: A review," Agricultural Systems, Elsevier, vol. 193(C).
    7. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Li, Zhou & Zhang, Qingping & Wei, Wanrong & Cui, Song & Tang, Wei & Li, Yuan, 2020. "Determining effects of water and nitrogen inputs on wheat yield and water productivity and nitrogen use efficiency in China: A quantitative synthesis," Agricultural Water Management, Elsevier, vol. 242(C).
    9. Cakmakci, Talip & Sahin, Ustun, 2021. "Improving silage maize productivity using recycled wastewater under different irrigation methods," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Mohammed, Ali T. & Irmak, Suat, 2022. "Maize response to irrigation and nitrogen under center pivot, subsurface drip and furrow irrigation: Water productivity, basal evapotranspiration and yield response factors," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Zhang, Zhenyu & Li, Xiaoyu & Liu, Lijuan & Wang, Yugang & Li, Yan, 2020. "Influence of mulched drip irrigation on landscape scale evapotranspiration from farmland in an arid area," Agricultural Water Management, Elsevier, vol. 230(C).
    12. Luo, Chengwei & Wang, Ruoshui & Li, Chaonan & Zheng, Chenghao & Dou, Xiaoyu, 2023. "Photosynthetic characteristics, soil nutrients, and their interspecific competitions in an apple–soybean alley cropping system subjected to different drip fertilizer regimes on the Loess Plateau, Chin," Agricultural Water Management, Elsevier, vol. 275(C).
    13. Fang, Qin & Zhang, Xiying & Shao, Liwei & Chen, Suying & Sun, Hongyong, 2018. "Assessing the performance of different irrigation systems on winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 196(C), pages 133-143.
    14. Uygan, Demet & Cetin, Oner & Alveroglu, Volkan & Sofuoglu, Aytug, 2021. "Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Ding, Wuhan & Chang, Naijie & Zhang, Jing & Li, Guichun & Zhang, Jianfeng & Ju, Xuehai & Zhang, Guilong & Li, Hu, 2022. "Optimized fertigation mitigates N2O and NO emissions and enhances NH3 volatilizations in an intensified greenhouse vegetable system," Agricultural Water Management, Elsevier, vol. 272(C).
    16. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    17. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    19. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    20. Haomiao Cheng & Qilin Yu & Mohmed A. M. Abdalhi & Fan Li & Zhiming Qi & Tengyi Zhu & Wei Cai & Xiaoping Chen & Shaoyuan Feng, 2022. "RZWQM2 Simulated Drip Fertigation Management to Improve Water and Nitrogen Use Efficiency of Maize in a Solar Greenhouse," Agriculture, MDPI, vol. 12(5), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.