IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v275y2023ics0378377422005480.html
   My bibliography  Save this article

Photosynthetic characteristics, soil nutrients, and their interspecific competitions in an apple–soybean alley cropping system subjected to different drip fertilizer regimes on the Loess Plateau, China

Author

Listed:
  • Luo, Chengwei
  • Wang, Ruoshui
  • Li, Chaonan
  • Zheng, Chenghao
  • Dou, Xiaoyu

Abstract

Imprecise irrigation hinders the sustainable development of the fruit tree–crop intercropping system in the Loess Gully Area of China. Drip fertigation was applied for two years as part of an apple–soybean intercropping system to optimize local water and nutrient management patterns. The effects of different drip irrigation and fertilizer levels on photosynthetic characteristics, soil nutrients, and their interspecific competitions were studied. The treatments were four irrigation levels, namely 60% (W1), 70% (W2), 80% (W3), and 90% (W4) of field capacity (Fc), and three nitrogen fertilization levels, namely 59 (F1), 92 (F2), and 124 kg∙ha–1 (F3). The control (CK) was a rain-fed (neither irrigation nor fertilizer) crop. The net photosynthetic rate (Pn), transpiration rate (Tr), and soybean yield (GY) increased at first, but then decreased as irrigation and fertilizer application levels rose. The partial factor productivity (PFP) decreased as fertilization increased, but the soil available nitrogen content showed the opposite trend. The soil nutrients, and soybean Pn and Tr were positively correlated with distance from the apple tree row. The interspecific competition intensity for light and soil water decreased from 2018 to 2019, while root and soil nitrate nitrogen (NN) increased. The interspecific competition correlation between the aboveground and belowground parts was weak and varied between the two intercropping years. A principal component analysis showed that treatment W3F2 had the highest comprehensive score. Thus, a combination of irrigation at 80% Fc and 92 kg∙ha–1 nitrogen fertilizer application is optimal for the system. A multiple regression analysis indicated a water input range of 4624.49–4795.75 m3·ha−1·a−1 combined with 84.10–107.27 kg·ha−1·a−1 fertilizer application was suitable for optimal irrigation and fertilization management based on the integrated benefits to root length density, GY, Pn, and PFP during the first 4–5 years of the intercropping system.

Suggested Citation

  • Luo, Chengwei & Wang, Ruoshui & Li, Chaonan & Zheng, Chenghao & Dou, Xiaoyu, 2023. "Photosynthetic characteristics, soil nutrients, and their interspecific competitions in an apple–soybean alley cropping system subjected to different drip fertilizer regimes on the Loess Plateau, Chin," Agricultural Water Management, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005480
    DOI: 10.1016/j.agwat.2022.108001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422005480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.108001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Xiangwei & Dang, Ke & Liu, Long & Zhao, Guan & Lv, Siming & Tian, Lixin & Jin, Fei & Feng, Yu & Zhao, Yingnan & Feng, Baili, 2021. "Intercropping combined with nitrogen input promotes proso millet (Panicum miliaceum L.) growth and resource use efficiency to increase grain yield on the Loess plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Dou, Xiaoyu & Wang, Ruoshui & Li, Chaonan & Zheng, Chenghao & Zhou, Xuan, 2022. "Spatial distribution of soil water, plant roots, and water use pattern under different drip fertigation regimes in an apple-soybean intercropping system on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Yubo Sun & Huaxing Bi & Huasen Xu & Hangqi Duan & Ruidong Peng & Jingjing Wang, 2018. "Below-Ground Interspecific Competition of Apple ( Malus pumila M.)–Soybean ( Glycine max L. Merr.) Intercropping Systems Based on Niche Overlap on the Loess Plateau of China," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    4. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Homaee, Mehdi & Asadi, Mohammad Esmaeil & Hoogenboom, Gerrit, 2009. "Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates," Agricultural Water Management, Elsevier, vol. 96(6), pages 946-954, June.
    5. Sandhu, O.S. & Gupta, R.K. & Thind, H.S. & Jat, M.L. & Sidhu, H.S. & Yadvinder-Singh,, 2019. "Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India," Agricultural Water Management, Elsevier, vol. 219(C), pages 19-26.
    6. Li, Haoru & Mei, Xurong & Wang, Jiandong & Huang, Feng & Hao, Weiping & Li, Baoguo, 2021. "Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China," Agricultural Water Management, Elsevier, vol. 244(C).
    7. Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
    8. Liang, Jiaping & He, Zijian & Shi, Wenjuan, 2020. "Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 240(C).
    9. Zheng, Chenghao & Wang, Ruoshui & Zhou, Xuan & Li, Chaonan & Dou, Xiaoyu, 2022. "Photosynthetic and growth characteristics of apple and soybean in an intercropping system under different mulch and irrigation regimes in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 266(C).
    10. Wang, Jiangtao & Du, Gangfeng & Tian, Jingshan & Jiang, Chuangdao & Zhang, Yali & Zhang, Wangfeng, 2021. "Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Zheng, Chenghao & Wang, Ruoshui & Zhou, Xuan & Li, Chaonan & Dou, Xiaoyu, 2021. "Effects of mulch and irrigation regimes on water distribution and root competition in an apple–soybean intercropping system in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 246(C).
    12. Zhou, Xuan & Wang, Ruoshui & Gao, Fei & Xiao, Huijie & Xu, Huasen & Wang, Dongmei, 2019. "Apple and maize physiological characteristics and water-use efficiency in an alley cropping system under water and fertilizer coupling in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 1-12.
    13. Liu, Xiaogang & Peng, Youliang & Yang, Qiliang & Wang, Xiukang & Cui, Ningbo, 2021. "Determining optimal deficit irrigation and fertilization to increase mango yield, quality, and WUE in a dry hot environment based on TOPSIS," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Zhaoyang Li & Rui Zong & Tianyu Wang & Zhenhua Wang & Jinzhu Zhang, 2021. "Adapting Root Distribution and Improving Water Use Efficiency via Drip Irrigation in a Jujube ( Zizyphus jujube Mill.) Orchard after Long-Term Flood Irrigation," Agriculture, MDPI, vol. 11(12), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Ruifeng Sun & Juanjuan Ma & Xihuan Sun & Lijian Zheng & Jiachang Guo, 2023. "Responses of the Leaf Water Physiology and Yield of Grapevine via Different Irrigation Strategies in Extremely Arid Areas," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    3. Wang, Xiuyuan & Shen, Lei & Liu, Tingting & Wei, Wenwen & Zhang, Shuai & Tuerti, Tayir & Li, Luhua & Zhang, Wei, 2023. "Juvenile plumcot tree can improve fruit quality and economic benefits by intercropping with alfalfa in semi-arid areas," Agricultural Systems, Elsevier, vol. 205(C).
    4. Zheng, Chenghao & Wang, Ruoshui & Zhou, Xuan & Li, Chaonan & Dou, Xiaoyu, 2022. "Photosynthetic and growth characteristics of apple and soybean in an intercropping system under different mulch and irrigation regimes in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Dou, Xiaoyu & Wang, Ruoshui & Li, Chaonan & Zheng, Chenghao & Zhou, Xuan, 2022. "Spatial distribution of soil water, plant roots, and water use pattern under different drip fertigation regimes in an apple-soybean intercropping system on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 269(C).
    6. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Zhang, Youliang & Feng, Shaoyuan & Wang, Fengxin & Feng, Ren & Nie, Wei, 2022. "Effects of drip discharge flux and soil wetted percentage on drip irrigated potato growth with film mulch," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Zheng, Chenghao & Wang, Ruoshui & Zhou, Xuan & Li, Chaonan & Dou, Xiaoyu, 2021. "Effects of mulch and irrigation regimes on water distribution and root competition in an apple–soybean intercropping system in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 246(C).
    9. Wu, Wanping & Liu, Minguo & Wu, Xiaojuan & Wang, Zikui & Yang, Huimin, 2022. "Effects of deficit irrigation on nitrogen uptake and soil mineral nitrogen in alfalfa grasslands of the inland arid area of China," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Patra, Kiranmoy & Parihar, C.M. & Nayak, H.S. & Rana, Biswajit & Sena, D.R. & Anand, Anjali & Reddy, K. Srikanth & Chowdhury, Manojit & Pandey, Renu & Kumar, Atul & Singh, L.K. & Ghatala, M.K. & Sidhu, 2023. "Appraisal of complementarity of subsurface drip fertigation and conservation agriculture for physiological performance and water economy of maize," Agricultural Water Management, Elsevier, vol. 283(C).
    11. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    12. Haomiao Cheng & Qilin Yu & Mohmed A. M. Abdalhi & Fan Li & Zhiming Qi & Tengyi Zhu & Wei Cai & Xiaoping Chen & Shaoyuan Feng, 2022. "RZWQM2 Simulated Drip Fertigation Management to Improve Water and Nitrogen Use Efficiency of Maize in a Solar Greenhouse," Agriculture, MDPI, vol. 12(5), pages 1-14, May.
    13. Abrahao, R. & Causapé, J. & García-Garizábal, I. & Merchán, D., 2011. "Implementing irrigation: Salt and nitrate exported from the Lerma basin (Spain)," Agricultural Water Management, Elsevier, vol. 102(1), pages 105-112.
    14. Yan Xiao & Dongchen Li & Can Huang & Bosong Ding & You Wang, 2023. "Improved Fracture Surface Analysis of Anticline Rocky Slopes Using a Modified AGA Approach: Feasibility and Effectiveness Evaluation," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    15. Zhao Chen & Xv Liu & Junpeng Niu & Wennan Zhou & Tian Zhao & Wenbo Jiang & Jian Cui & Robert Kallenbach & Quanzhen Wang, 2019. "Optimizing irrigation and nitrogen fertilization for seed yield in western wheatgrass [Pascopyrum smithii (Rydb.) Á. Löve] using a large multi-factorial field design," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
    16. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    17. Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
    18. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    19. Cai, Yaohui & Wu, Pute & Gao, Xiaodong & Zhu, Delan & Zhang, Lin & Dai, Zhiguang & Chau, Henry Wai & Zhao, Xining, 2022. "Subsurface irrigation with ceramic emitters: Evaluating soil water effects under multiple precipitation scenarios," Agricultural Water Management, Elsevier, vol. 272(C).
    20. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.