IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v210y2025ics1364032124009857.html
   My bibliography  Save this article

Techno-socio-economic bottlenecks in increasing battery capacity for supporting the energy transition

Author

Listed:
  • Sihvonen, Ville
  • Grönman, Aki
  • Honkapuro, Samuli

Abstract

Battery energy storage systems (BESSs) have been identified to have a good potential to offer valuable ancillary services for many of the challenges that the transition towards highly renewable energy systems might bring, both on local and system levels. This study presents a techno-socio-economic analysis of bottlenecks in increasing the battery capacity, specifically to offer ancillary services. Analysis covers technical capability, economic feasibility, environmental aspects, and regulative issues of BESSs providing support for the power system. This paper contributes by identifying current bottlenecks in increasing battery capacity to support the transition to carbon-neutral renewable energy systems and provides potential solutions for policymakers, researchers, project developers, and storage owners to relieve these identified barriers. Based on the analysis, BESSs can offer high performance for many of the needed ancillary services, proving very good technical capability. The main challenge for a breakthrough in capacity addition can be identified to be economic feasibility. The major limiting factor is the upfront investment cost of varying BESS technologies, but in the case of providing ancillary services, another factor is related to the regulation, especially in electricity markets. It becomes vital to develop electricity markets further and guarantee access to the market for BESSs. Recycling of BESSs, especially lithium-ion batteries, must improve to reduce the need for new critical raw materials and lessen the overall environmental impact.

Suggested Citation

  • Sihvonen, Ville & Grönman, Aki & Honkapuro, Samuli, 2025. "Techno-socio-economic bottlenecks in increasing battery capacity for supporting the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009857
    DOI: 10.1016/j.rser.2024.115259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alaperä, Ilari & Honkapuro, Samuli & Paananen, Janne, 2018. "Data centers as a source of dynamic flexibility in smart girds," Applied Energy, Elsevier, vol. 229(C), pages 69-79.
    2. Wen Yan & Ming Ma, 2023. "Electrochemical Conversion of Carbon Dioxide," Energies, MDPI, vol. 16(5), pages 1-3, February.
    3. Ekaterina Bayborodina & Michael Negnevitsky & Evan Franklin & Alison Washusen, 2021. "Grid-Scale Battery Energy Storage Operation in Australian Electricity Spot and Contingency Reserve Markets," Energies, MDPI, vol. 14(23), pages 1-21, December.
    4. Yanbo Wang & Qing Li & Hu Hong & Shuo Yang & Rong Zhang & Xiaoqi Wang & Xu Jin & Bo Xiong & Shengchi Bai & Chunyi Zhi, 2023. "Lean-water hydrogel electrolyte for zinc ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    6. Peiliu Li & Xianfu Huang & Ya-Pu Zhao, 2023. "Electro-capillary peeling of thin films," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Mingkai Wang & Saulo O. D. Luiz & Shuguang Zhang & Antonio M. N. Lima, 2023. "Electric Flight in Extreme and Uncertain Urban Environments," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    8. Bahloul, Mohamed & Daoud, Mohamed & Khadem, Shafiuzzaman K., 2022. "A bottom-up approach for techno-economic analysis of battery energy storage system for Irish grid DS3 service provision," Energy, Elsevier, vol. 245(C).
    9. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    10. Brown, David P. & Sappington, David E. M., 2023. "Designing Incentive Regulation in the Electricity Sector," Working Papers 2023-10, University of Alberta, Department of Economics.
    11. Qing-Chao Liu & Ji-Jing Xu & Dan Xu & Xin-Bo Zhang, 2015. "Flexible lithium–oxygen battery based on a recoverable cathode," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    12. ChungHyuk Lee & Wilton J. M. Kort-Kamp & Haoran Yu & David A. Cullen & Brian M. Patterson & Tanvir Alam Arman & Siddharth Komini Babu & Rangachary Mukundan & Rod L. Borup & Jacob S. Spendelow, 2023. "Grooved electrodes for high-power-density fuel cells," Nature Energy, Nature, vol. 8(7), pages 685-694, July.
    13. McManus, M.C., 2012. "Environmental consequences of the use of batteries in low carbon systems: The impact of battery production," Applied Energy, Elsevier, vol. 93(C), pages 288-295.
    14. Qian Jia & Ying Wang & Zhenci Xu & Fengting Li, 2023. "Electricity outages delay SDGs in sub-Saharan Africa," Nature, Nature, vol. 618(7963), pages 30-30, June.
    15. Sonia Longo & Maurizio Cellura & Maria Anna Cusenza & Francesco Guarino & Marina Mistretta & Domenico Panno & Claudia D’Urso & Salvatore Gianluca Leonardi & Nicola Briguglio & Giovanni Tumminia & Vinc, 2021. "Life Cycle Assessment for Supporting Eco-Design: The Case Study of Sodium–Nickel Chloride Cells," Energies, MDPI, vol. 14(7), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akter, Hosne Ara & Masum, Farhad Hossain & Dwivedi, Puneet, 2024. "Life cycle emissions and unit production cost of sustainable aviation fuel from logging residues in Georgia, United States," Renewable Energy, Elsevier, vol. 228(C).
    2. Casella, Virginia & La Fata, Alice & Suzzi, Stefano & Barbero, Giulia & Barilli, Riccardo, 2024. "The United Kingdom electricity market mechanism: A tool for a battery energy storage system optimal dispatching," Renewable Energy, Elsevier, vol. 231(C).
    3. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    4. Paulo Rotella Junior & Luiz Célio Souza Rocha & Sandra Naomi Morioka & Ivan Bolis & Gianfranco Chicco & Andrea Mazza & Karel Janda, 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives," Energies, MDPI, vol. 14(9), pages 1-29, April.
    5. Tahir, Mustafa & Hu, Sideng & Zhu, Haoqi, 2024. "Strategic operation of electric vehicle in residential microgrid with vehicle-to-home features," Energy, Elsevier, vol. 308(C).
    6. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    8. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    9. Serguey A. Maximov & Gareth P. Harrison & Daniel Friedrich, 2019. "Long Term Impact of Grid Level Energy Storage on Renewable Energy Penetration and Emissions in the Chilean Electric System," Energies, MDPI, vol. 12(6), pages 1-19, March.
    10. Mengzhu Xiao & Manuel Wetzel & Thomas Pregger & Sonja Simon & Yvonne Scholz, 2020. "Modeling the Supply of Renewable Electricity to Metropolitan Regions in China," Energies, MDPI, vol. 13(12), pages 1-31, June.
    11. Waterson, Michael, 2017. "The characteristics of electricity storage, renewables and markets," Energy Policy, Elsevier, vol. 104(C), pages 466-473.
    12. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    13. Abbasi, Bardia & Li, Simon & Mwesigye, Aggrey, 2024. "Energy, exergy, economic, and environmental (4E) analysis of SAHP water heaters in very cold climatic conditions," Renewable Energy, Elsevier, vol. 226(C).
    14. Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1480, Economics Department, Queen's University.
    15. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    16. Schauf, Magnus & Schwenen, Sebastian, 2023. "System price dynamics for battery storage," Energy Policy, Elsevier, vol. 183(C).
    17. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    18. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin, 2022. "The role of modified diesel generation within isolated power systems," Energy, Elsevier, vol. 240(C).
    19. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    20. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.