IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v210y2025ics1364032124009791.html
   My bibliography  Save this article

EV charging for multifamily housing: Review of evidence, methods, barriers, and opportunities

Author

Listed:
  • Kuby, M.
  • Cordova-Cruzatty, A.
  • Parker, N.C.
  • King, D.A.

Abstract

For equitable electric vehicle adoption, the challenge posed by the dearth of home-charging infrastructure for multifamily housing residents has been widely acknowledged but infrequently studied. As research and practitioners began to focus on equity concerns in the 2010s, the non-peer-reviewed “grey” literature (consisting of reports from university centers, national labs, nongovernmental organizations, consultants, and government agencies) advanced faster and further than peer-reviewed articles. The major research gap in this field is the extremely small number of peer-reviewed papers focused entirely on electric vehicle charging for multifamily housing. As a result, this review also includes (a) studies of charging infrastructure that separately examine multifamily charging, and (b) studies of electric vehicle adoption that address how the lack of home charging hampers equitable adoption. This study reviews 103 documents in this emerging research area. Research often combines a variety of methods to study this problem, which this paper groups into spatial or geographic analysis; survey research; statistical modeling; qualitative research; policy, law, economic, engineering, and business research; and case studies, site visits, and pilot projects. Every study viewed multifamily housing and renting as posing substantial barriers including physical/technological (especially parking and electrical capacity); financial (especially the high cost); management; public acceptance/demand; and regulatory/legal issues. This research proposed the first classification system for the varied solutions proposed, including incentives and subsidies; technological; new business models; regulatory and legal; geographical (including curbside or streetlights); education and outreach; and substitution. With so few studies focused on this problem, many promising directions beckon to future researchers.

Suggested Citation

  • Kuby, M. & Cordova-Cruzatty, A. & Parker, N.C. & King, D.A., 2025. "EV charging for multifamily housing: Review of evidence, methods, barriers, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009791
    DOI: 10.1016/j.rser.2024.115253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lopez-Behar, Diana & Tran, Martino & Froese, Thomas & Mayaud, Jerome R. & Herrera, Omar E. & Merida, Walter, 2019. "Charging infrastructure for electric vehicles in Multi-Unit Residential Buildings: Mapping feedbacks and policy recommendations," Energy Policy, Elsevier, vol. 126(C), pages 444-451.
    2. Azarova, Valeriya & Cohen, Jed J. & Kollmann, Andrea & Reichl, Johannes, 2020. "The potential for community financed electric vehicle charging infrastructure," Munich Reprints in Economics 84760, University of Munich, Department of Economics.
    3. Lucas W. Davis, 2019. "Evidence of a homeowner-renter gap for electric vehicles," Applied Economics Letters, Taylor & Francis Journals, vol. 26(11), pages 927-932, June.
    4. Yudai Honma & Daisuke Hasegawa & Katsuhiro Hata & Takashi Oguchi, 2024. "Locational Analysis of In-motion Wireless Power Transfer System for Long-distance Trips by Electric Vehicles: Optimal Locations and Economic Rationality in Japanese Expressway Network," Networks and Spatial Economics, Springer, vol. 24(1), pages 261-290, March.
    5. Rodier, Caroline PhD & Harold, Brian MBA & Zhang, Yunwan MS, 2021. "Early Results from an Electric Vehicle Carsharing Service in Rural Disadvantaged Communities in the San Joaquin Valley," Institute of Transportation Studies, Working Paper Series qt0rj0z090, Institute of Transportation Studies, UC Davis.
    6. Shan, Rui & Kittner, Noah, 2024. "Allocation of policy resources for energy storage development considering the Inflation Reduction Act," Energy Policy, Elsevier, vol. 184(C).
    7. Gan, Zhongying, 2023. "Do electric vehicle charger locations respond to the potential charging demands from multi-unit dwellings? Evidence from Los Angeles County," Transport Policy, Elsevier, vol. 138(C), pages 74-93.
    8. Saxena, Samveg & MacDonald, Jason & Moura, Scott, 2015. "Charging ahead on the transition to electric vehicles with standard 120V wall outlets," Applied Energy, Elsevier, vol. 157(C), pages 720-728.
    9. Canepa, Kathryn & Hardman, Scott & Tal, Gil, 2019. "An early look at plug-in electric vehicle adoption in disadvantaged communities in California," Transport Policy, Elsevier, vol. 78(C), pages 19-30.
    10. Guo, Shuocheng & Kontou, Eleftheria, 2021. "Disparities and equity issues in electric vehicles rebate allocation," Energy Policy, Elsevier, vol. 154(C).
    11. Chen, T. Donna & Kockelman, Kara M. & Hanna, Josiah P., 2016. "Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 243-254.
    12. Patt, Anthony & Aplyn, David & Weyrich, Philippe & van Vliet, Oscar, 2019. "Availability of private charging infrastructure influences readiness to buy electric cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 1-7.
    13. San Román, Tomás Gómez & Momber, Ilan & Abbad, Michel Rivier & Sánchez Miralles, Álvaro, 2011. "Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships," Energy Policy, Elsevier, vol. 39(10), pages 6360-6375, October.
    14. Hsu, Chih-Wei & Fingerman, Kevin, 2021. "Public electric vehicle charger access disparities across race and income in California," Transport Policy, Elsevier, vol. 100(C), pages 59-67.
    15. Jing Liang & Yueming (Lucy) Qiu & Pengfei Liu & Pan He & Denise L. Mauzerall, 2023. "Effects of expanding electric vehicle charging stations in California on the housing market," Nature Sustainability, Nature, vol. 6(5), pages 549-558, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gan, Zhongying, 2023. "Do electric vehicle charger locations respond to the potential charging demands from multi-unit dwellings? Evidence from Los Angeles County," Transport Policy, Elsevier, vol. 138(C), pages 74-93.
    2. Hopkins, Emma & Potoglou, Dimitris & Orford, Scott & Cipcigan, Liana, 2023. "Can the equitable roll out of electric vehicle charging infrastructure be achieved?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Roy, Avipsa & Law, Mankin, 2022. "Examining spatial disparities in electric vehicle charging station placements using machine learning," SocArXiv hvw2t, Center for Open Science.
    4. Zhang, Yuerong & Kamargianni, Maria & Cheng, Long & De Vos, Jonas & Cao, Mengqiu, 2024. "Evaluating the accessibility of on-street household electric vehicle charging stations in London: Policy insights from equity analysis across emission zones," Energy Policy, Elsevier, vol. 195(C).
    5. Qiao Yu & Brian Yueshuai He & Jiaqi Ma & Yifang Zhu, 2023. "California’s zero-emission vehicle adoption brings air quality benefits yet equity gaps persist," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Jonas, Tim & Macht, Gretchen A., 2024. "Analyzing the urban-rural divide: Understanding geographic variations in charging behavior for a user-centered EVSE infrastructure," Journal of Transport Geography, Elsevier, vol. 116(C).
    7. repec:osf:socarx:hvw2t_v1 is not listed on IDEAS
    8. Seung Jun Choi & Junfeng Jiao, 2024. "Uncovering electric vehicle ownership disparities using K-means clustering analysis: A case study of Austin, Texas," Journal of Computational Social Science, Springer, vol. 7(3), pages 2403-2456, December.
    9. Trinko, David & Horesh, Noah & Porter, Emily & Dunckley, Jamie & Miller, Erika & Bradley, Thomas, 2023. "Transportation and electricity systems integration via electric vehicle charging-as-a-service: A review of techno-economic and societal benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    10. Loni, Abdolah & Asadi, Somayeh, 2023. "Data-driven equitable placement for electric vehicle charging stations: Case study San Francisco," Energy, Elsevier, vol. 282(C).
    11. Lukáš Dvořáček & Martin Horák & Michaela Valentová & Jaroslav Knápek, 2020. "Optimization of Electric Vehicle Charging Points Based on Efficient Use of Chargers and Providing Private Charging Spaces," Energies, MDPI, vol. 13(24), pages 1-28, December.
    12. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Jon Williamsson, 2022. "EV Charging on Ferries and in Terminals—A Business Model Perspective," Energies, MDPI, vol. 15(18), pages 1-14, September.
    14. Liangui Peng & Ying Li, 2024. "Effects of diversified subsidies on the decisions of infrastructure operators considering charging infrastructure construction level and price sensitivity," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11343-11377, May.
    15. Jiehong Lou & Xingchi Shen & Deb A. Niemeier & Nathan Hultman, 2024. "Income and racial disparity in household publicly available electric vehicle infrastructure accessibility," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Ma, Shao-Chao & Fan, Ying, 2020. "A deployment model of EV charging piles and its impact on EV promotion," Energy Policy, Elsevier, vol. 146(C).
    17. Yunhan Zheng & David R. Keith & Shenhao Wang & Mi Diao & Jinhua Zhao, 2024. "Effects of electric vehicle charging stations on the economic vitality of local businesses," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Wang, Yuanyuan & Fan, Ruguo & Du, Kang & Lin, Jinchai & Xu, Xiaoxia & Zhang, Wenjie & Srinivasan, Dipti, 2025. "Private electric vehicle charger installation game in old communities considering benefit uncertainty: A two-layer coupled complex network perspective," Transport Policy, Elsevier, vol. 162(C), pages 113-127.
    19. Soares, João & Borges, Nuno & Fotouhi Ghazvini, Mohammad Ali & Vale, Zita & de Moura Oliveira, P.B., 2016. "Scenario generation for electric vehicles' uncertain behavior in a smart city environment," Energy, Elsevier, vol. 111(C), pages 664-675.
    20. Börjesson, Maria & Asplund, Disa & Hamilton, Carl, 2021. "Optimal kilometre tax for electric passenger cars," Working Papers 2021:3, Swedish National Road & Transport Research Institute (VTI).
    21. Lily Hanig & Catherine Ledna & Destenie Nock & Corey D. Harper & Arthur Yip & Eric Wood & C. Anna Spurlock, 2025. "Finding gaps in the national electric vehicle charging station coverage of the United States," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.