IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v209y2025ics1364032124007573.html
   My bibliography  Save this article

A techno-economic analysis of communication in low-voltage islanded microgrids

Author

Listed:
  • Neal, Derek C.
  • Rogers, Dan J.
  • McCulloch, Malcolm

Abstract

Low-voltage islanded microgrids are an attractive solution for remote electrification due to their flexible and autonomous nature. Like all power systems, high capital costs must be amortised through customer subscriptions. Although a communication system adds capital cost to a microgrid, it has the potential to reduce overall capital and operating costs because improved metering and billing reduces over-capacity, and enables coordinated control of microgrid components. This paper surveys digital communication for microgrids and provides descriptions of applications, a technology comparison, and a cost-benefit analysis of the value added to energy delivery by the addition of a communication system of a particular bit rate and latency to a representative low-voltage islanded microgrid. The study concludes that investment in a low bit rate, medium latency (1 kbps per customer, 100 ms) communication system has significant economic benefit to both customer and utility by enabling services such as automatic meter reading and demand side management. In a solar PV-dominated microgrid, the addition of a communication system may reduce the levelized cost of energy by 32 %.

Suggested Citation

  • Neal, Derek C. & Rogers, Dan J. & McCulloch, Malcolm, 2025. "A techno-economic analysis of communication in low-voltage islanded microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124007573
    DOI: 10.1016/j.rser.2024.115031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124007573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    2. Shakya, Bhupendra & Bruce, Anna & MacGill, Iain, 2019. "Survey based characterisation of energy services for improved design and operation of standalone microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 493-503.
    3. Abdullah, Sabah & Jeanty, P. Wilner, 2011. "Willingness to pay for renewable energy: Evidence from a contingent valuation survey in Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2974-2983, August.
    4. Smith, Thomas B., 2004. "Electricity theft: a comparative analysis," Energy Policy, Elsevier, vol. 32(18), pages 2067-2076, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rains, Emily & Abraham, Ronald J., 2018. "Rethinking barriers to electrification: Does government collection failure stunt public service provision?," Energy Policy, Elsevier, vol. 114(C), pages 288-300.
    2. Imam, M. & Jamasb, T. & Llorca, M. & Llorca, M., 2018. "Power Sector Reform and Corruption: Evidence from Electricity Industry in Sub-Saharan Africa," Cambridge Working Papers in Economics 1801, Faculty of Economics, University of Cambridge.
    3. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    4. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    5. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    6. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    7. Obayelu, Oluwakemi Adeola & Raji, Abdulraheem Kehinde, 2017. "Are rural households willing to pay for clean energy? Evidence from southwest Nigeria," Journal of Agribusiness and Rural Development, University of Life Sciences, Poznan, Poland, vol. 45(3), March.
    8. Netzah Calamaro & Yuval Beck & Ran Ben Melech & Doron Shmilovitz, 2021. "An Energy-Fraud Detection-System Capable of Distinguishing Frauds from Other Energy Flow Anomalies in an Urban Environment," Sustainability, MDPI, vol. 13(19), pages 1-38, September.
    9. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    10. Min, Brian & Golden, Miriam, 2014. "Electoral cycles in electricity losses in India," Energy Policy, Elsevier, vol. 65(C), pages 619-625.
    11. Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
    12. Lim, Kyoung-Min & Lim, Seul-Ye & Yoo, Seung-Hoon, 2014. "Estimating the economic value of residential electricity use in the Republic of Korea using contingent valuation," Energy, Elsevier, vol. 64(C), pages 601-606.
    13. Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
    14. Norton, Daniel & Hynes, Stephen, 2015. "Spatial issues arising from a value transfer exercise for environmental quality of marine waters," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212663, European Association of Agricultural Economists.
    15. Bensch, Gunther & Grimm, Michael & Huppertz, Maximilian & Langbein, Jörg & Peters, Jörg, 2018. "Are promotion programs needed to establish off-grid solar energy markets? Evidence from rural Burkina Faso," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1060-1068.
    16. Adwoa Asantewaa & Tooraj Jamasb & Manuel Llorca, 2022. "Electricity Sector Reform Performance in Sub-Saharan Africa: A Parametric Distance Function Approach," Energies, MDPI, vol. 15(6), pages 1-29, March.
    17. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    18. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    19. Tooraj Jamasb & Rabindra Nepal & Govinda Timilsina & Michael Toman, 2014. "Energy Sector Reform, Economic Efficiency and Poverty Reduction," Discussion Papers Series 529, School of Economics, University of Queensland, Australia.
    20. Shin, Jungwoo & Woo, JongRoul & Huh, Sung-Yoon & Lee, Jongsu & Jeong, Gicheol, 2014. "Analyzing public preferences and increasing acceptability for the Renewable Portfolio Standard in Korea," Energy Economics, Elsevier, vol. 42(C), pages 17-26.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124007573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.