IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v18y2013icp568-582.html
   My bibliography  Save this article

Review of transmission schemes and case studies for renewable power integration into the remote grid

Author

Listed:
  • Hasan, Kazi Nazmul
  • Saha, Tapan Kumar
  • Eghbal, Mehdi
  • Chattopadhyay, Deb

Abstract

Investment in transmission for renewable power penetration to the remote grid essentially faces a set of inherent, regulatory, economic and technical challenges. This work investigates these challenges to enhance renewable power integration into the remote grid. This study aims to enhance regulatory policies and associated planning frameworks to be more efficient and justifiable for renewable power integration paradigm. First, a set of leading transmission schemes practiced, or investigated, in different countries are evaluated against the challenges which are obvious for long distance renewable power transmission. Second, a net benefit framework is presented to address the challenging issues of location constrained renewable power penetration into the Queensland network of the Australian grid. The proposed framework incorporates the carbon emission price as an environmental benefit which significantly influences the cost–benefit analysis. This paper discusses the ‘hub approach’ of network integration. The transmission investment cost allocation is addressed here as well. The concepts are verified through the implementation of the proposed framework in four prospective projects of the Queensland network in the Australian national electricity market (NEM).

Suggested Citation

  • Hasan, Kazi Nazmul & Saha, Tapan Kumar & Eghbal, Mehdi & Chattopadhyay, Deb, 2013. "Review of transmission schemes and case studies for renewable power integration into the remote grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 568-582.
  • Handle: RePEc:eee:rensus:v:18:y:2013:i:c:p:568-582
    DOI: 10.1016/j.rser.2012.10.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112005965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.10.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swider, Derk J. & Beurskens, Luuk & Davidson, Sarah & Twidell, John & Pyrko, Jurek & Prüggler, Wolfgang & Auer, Hans & Vertin, Katarina & Skema, Romualdas, 2008. "Conditions and costs for renewables electricity grid connection: Examples in Europe," Renewable Energy, Elsevier, vol. 33(8), pages 1832-1842.
    2. Soroudi, Alireza & Ehsan, Mehdi, 2011. "A possibilistic-probabilistic tool for evaluating the impact of stochastic renewable and controllable power generation on energy losses in distribution networks--A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 794-800, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming, Zeng & Lilin, Peng & Qiannan, Fan & Yingjie, Zhang, 2016. "Trans-regional electricity transmission in China: Status, issues and strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 572-583.
    2. Hasan, Kazi Nazmul & Saha, Tapan Kumar & Eghbal, Mehdi, 2014. "Investigating the priority of market participants for low emission generation entry into the Australian grid," Energy, Elsevier, vol. 71(C), pages 445-455.
    3. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    4. Kishore, T.S. & Singal, S.K., 2014. "Optimal economic planning of power transmission lines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 949-974.
    5. Hasan, Kazi Nazmul & Saha, Tapan Kumar & Chattopadhyay, Deb & Eghbal, Mehdi, 2014. "Benefit-based expansion cost allocation for large scale remote renewable power integration into the Australian grid," Applied Energy, Elsevier, vol. 113(C), pages 836-847.
    6. Oliva H., Sebastian & Muñoz, Juan & Fredes, Felipe & Sauma, Enzo, 2022. "Impact of increasing transmission capacity for a massive integration of renewable energy on the energy and environmental value of distributed generation," Renewable Energy, Elsevier, vol. 183(C), pages 524-534.
    7. Athawale, Rasika & Felder, Frank A., 2023. "Overbuilding transmission: A case study and policy analysis of the Indian power sector," Energy Policy, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiroux, C. & Saguan, M., 2010. "Large-scale wind power in European electricity markets: Time for revisiting support schemes and market designs?," Energy Policy, Elsevier, vol. 38(7), pages 3135-3145, July.
    2. Li, Yanfu & Zio, Enrico, 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renewable Energy, Elsevier, vol. 41(C), pages 235-244.
    3. Maammeur, H. & Hamidat, A. & Loukarfi, L. & Missoum, M. & Abdeladim, K. & Nacer, T., 2017. "Performance investigation of grid-connected PV systems for family farms: case study of North-West of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1208-1220.
    4. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    5. Leonardo Meeus, 2015. "Offshore grids for renewables: do we need a particular regulatory framework?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    6. Jabeen, Gul & Ahmad, Munir & Zhang, Qingyu, 2021. "Perceived critical factors affecting consumers’ intention to purchase renewable generation technologies: Rural-urban heterogeneity," Energy, Elsevier, vol. 218(C).
    7. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    8. Pepermans, Guido & Willems, Bert, 2010. "Cost Recovery in Congested Electricity Networks," Working Papers 2010/22, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    9. He, Y.X. & Zhu, M.Z. & Xiong, W. & Zhang, T. & Ge, X.L., 2012. "Electricity transmission tariffs for large-scale wind power consumption in western Gansu province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4543-4550.
    10. Hua, Yaping & Oliphant, Monica & Hu, Eric Jing, 2016. "Development of renewable energy in Australia and China: A comparison of policies and status," Renewable Energy, Elsevier, vol. 85(C), pages 1044-1051.
    11. Toonen, Hilde M. & Lindeboom, Han J., 2015. "Dark green electricity comes from the sea: Capitalizing on ecological merits of offshore wind power?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1023-1033.
    12. González, Javier Serrano & Lacal-Arántegui, Roberto, 2016. "A review of regulatory framework for wind energy in European Union countries: Current state and expected developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 588-602.
    13. Sunila, Kanerva & Bergaentzlé, Claire & Martin, Bénédicte & Ekroos, Ari, 2019. "A supra-national TSO to enhance offshore wind power development in the Baltic Sea? A legal and regulatory analysis," Energy Policy, Elsevier, vol. 128(C), pages 775-782.
    14. Hirth, Lion & Müller, Simon, 2016. "System-friendly wind power," Energy Economics, Elsevier, vol. 56(C), pages 51-63.
    15. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P., 2015. "Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 569-583.
    16. Byrnes, Liam & Brown, Colin & Foster, John & Wagner, Liam D., 2013. "Australian renewable energy policy: Barriers and challenges," Renewable Energy, Elsevier, vol. 60(C), pages 711-721.
    17. Singh, Bindeshwar & Pal, Charitra & Mukherjee, V. & Tiwari, Prabhakar & Yadav, Manish Kumar, 2017. "Distributed generation planning from power system performances viewpoints: A taxonomical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1472-1492.
    18. Khodakarami, Alireza & Farahani, Hassan Feshki & Aghaei, Jamshid, 2017. "Stochastic characterization of electricity energy markets including plug-in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 112-122.
    19. Allik, Alo & Märss, Maido & Uiga, Jaanus & Annuk, Andres, 2016. "Optimization of the inverter size for grid-connected residential wind energy systems with peak shaving," Renewable Energy, Elsevier, vol. 99(C), pages 1116-1125.
    20. Christoffer Hallgren & Johan Arnqvist & Stefan Ivanell & Heiner Körnich & Ville Vakkari & Erik Sahlée, 2020. "Looking for an Offshore Low-Level Jet Champion among Recent Reanalyses: A Tight Race over the Baltic Sea," Energies, MDPI, vol. 13(14), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:18:y:2013:i:c:p:568-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.