IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v186y2023ics1364032123005087.html
   My bibliography  Save this article

Multiple accounting of carbon emission responsibility in the construction sector under different principles: A study from China

Author

Listed:
  • Zhu, Chen
  • Guo, Guisong
  • Su, Shu
  • Hong, Jingke
  • Li, Xiaodong

Abstract

The construction sector is a key actor in fighting climate change. A clear and comprehensive accounting of its carbon emission responsibility is the basis for effective emission mitigation actions. The intersectoral and interregional trade of the construction sector complicates emission responsibility allocation. Neglecting such trade flows or measuring them from a single perspective may cause the sector's emission status to be misinterpreted. Hence, based on the environmentally extended multiregional input-output model, this paper establishes the construction sector's multiprinciple emission responsibility accounting framework and conducts multiple accounting for China's construction sector. The emission distribution and transfer across regions and sectors are systematically revealed, and various accounting principles, regional clusters, and corresponding policy implications are compared and discussed. The results show significant differences in the emission responsibilities of the construction sector under different principles, indicating that the choice of principles will greatly affect the determination of responsibility and corresponding policy priorities, which requires careful consideration. The emission responsibilities in different regions also have notable heterogeneity under each principle and are further clustered into three main emission patterns, suggesting that classified and targeted emission mitigation strategies should be adopted. The emission transfer analysis demonstrates that the construction sector is a typical end-of-chain sector with high emission-pulling effects on upstream industries and tiny emission-pushing effects on downstream industries, resulting in varied incentive impacts under each principle. Overall, this study contributes extensive insights into the emission responsibility of the construction sector, supporting common but differentiated emission reduction targets and policy settings.

Suggested Citation

  • Zhu, Chen & Guo, Guisong & Su, Shu & Hong, Jingke & Li, Xiaodong, 2023. "Multiple accounting of carbon emission responsibility in the construction sector under different principles: A study from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123005087
    DOI: 10.1016/j.rser.2023.113651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Youguo, 2013. "The responsibility for carbon emissions and carbon efficiency at the sectoral level: Evidence from China," Energy Economics, Elsevier, vol. 40(C), pages 967-975.
    2. Wang, Hanjie & Yu, Xiaohua, 2023. "Carbon dioxide emission typology and policy implications: Evidence from machine learning," China Economic Review, Elsevier, vol. 78(C).
    3. Zhang, Youguo, 2010. "Supply-side structural effect on carbon emissions in China," Energy Economics, Elsevier, vol. 32(1), pages 186-193, January.
    4. Zhang, Youguo, 2015. "Provincial responsibility for carbon emissions in China under different principles," Energy Policy, Elsevier, vol. 86(C), pages 142-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Junjie, 2024. "Spatialized carbon-energy-water footprint of emerging coal chemical industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Zhang, Kun & Cao, Yiyi & Liu, Zhouyi & Zhou, Qi & Qu, Shen & Wei, Yi-Ming, 2024. "Allocation of carbon emission responsibility among Chinese cities guided by economic welfare gains: Case study based on multi-regional input-output analysis," Applied Energy, Elsevier, vol. 376(PA).
    3. Zhao, Qingyun & Han, Fei & Huang, Yuhong & She, Xiaohui & You, Zhanping & Zhang, Biao, 2024. "Research of the carbon footprint calculation and evaluation method based on the pattern microalgae for biodiesel production," Renewable Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Shuijun & Zhang, Wencheng & Sun, Chuanwang, 2016. "‘Environmental load displacement’ from the North to the South: A consumption-based perspective with a focus on China," Ecological Economics, Elsevier, vol. 128(C), pages 147-158.
    2. Jared Starr & Craig Nicolson & Michael Ash & Ezra M Markowitz & Daniel Moran, 2023. "Income-based U.S. household carbon footprints (1990–2019) offer new insights on emissions inequality and climate finance," PLOS Climate, Public Library of Science, vol. 2(8), pages 1-24, August.
    3. Xie, Rui & Hu, Guangxiao & Zhang, Youguo & Liu, Yu, 2017. "Provincial transfers of enabled carbon emissions in China: A supply-side perspective," Energy Policy, Elsevier, vol. 107(C), pages 688-697.
    4. Wang, Bing & GENG, Linna & W.Y. Tam, Vivian, 2025. "Effective carbon responsibility allocation in construction supply chain under the carbon trading policy," Energy, Elsevier, vol. 319(C).
    5. Xia, Yan & Tang, Zhipeng, 2017. "The impacts of emissions accounting methods on an imperfect competitive carbon trading market," Energy, Elsevier, vol. 119(C), pages 67-76.
    6. Xie, Rui & Wang, Fangfang & Chevallier, Julien & Zhu, Bangzhu & Zhao, Guomei, 2018. "Supply-side structural effects of air pollutant emissions in China: A comparative analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 89-95.
    7. Rui Xie & Chao Gao & Guomei Zhao & Yu Liu & Shengcheng Xu, 2017. "Empirical Study of China’s Provincial Carbon Responsibility Sharing: Provincial Value Chain Perspective," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    8. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    9. Du, Ruijin & Wang, Ya & Dong, Gaogao & Tian, Lixin & Liu, Yixiao & Wang, Minggang & Fang, Guochang, 2017. "A complex network perspective on interrelations and evolution features of international oil trade, 2002–2013," Applied Energy, Elsevier, vol. 196(C), pages 142-151.
    10. Zixun Guo & Zhimei Gao & Wenbin Zhang, 2023. "Accounting and Decomposition of Energy Footprint: Evidence from 28 Sectors in China," Sustainability, MDPI, vol. 15(17), pages 1-24, September.
    11. Mingrong Wang & Mingxi Wang & Lihua Lang, 2017. "Reconsidering Carbon Permits Auction Mechanism: An Efficient Dynamic Model," The World Economy, Wiley Blackwell, vol. 40(8), pages 1624-1645, August.
    12. Hua Liao & Celio Andrade & Julio Lumbreras & Jing Tian, 2018. "CO2 Emissions in Beijing: Sectoral Linkages and Demand Drivers," CEEP-BIT Working Papers 113, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    13. Zhang, Yang & Hu, Shan & Yan, Da & Jiang, Yi, 2023. "Proposing a carbon emission responsibility allocation method with benchmark approach," Ecological Economics, Elsevier, vol. 213(C).
    14. Tao, Yong & Lin, Li & Wang, Hanjie & Hou, Chen, 2023. "Superlinear growth and the fossil fuel energy sustainability dilemma: Evidence from six continents," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 39-51.
    15. Ju, Yiyi & Fujikawa, Kiyoshi, 2019. "Modeling the cost transmission mechanism of the emission trading scheme in China," Applied Energy, Elsevier, vol. 236(C), pages 172-182.
    16. Hongguang Liu & Xiaomei Fan, 2017. "Value-Added-Based Accounting of CO 2 Emissions: A Multi-Regional Input-Output Approach," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    17. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    18. Zhongxun Zhang & Kaifang Shi & Zhiyong Zhu & Lu Tang & Kangchuan Su & Qingyuan Yang, 2022. "Spatiotemporal Evolution and Influencing Factors of the Rural Natural Capital Utilization Efficiency: A Case Study of Chongqing, China," Land, MDPI, vol. 11(5), pages 1-29, May.
    19. Zhen, Wei & Qin, Quande & Zhong, Zhangqi & Li, Li & Wei, Yi-Ming, 2018. "Uncovering household indirect energy-saving responsibility from a sectoral perspective: An empirical analysis of Guangdong, China," Energy Economics, Elsevier, vol. 72(C), pages 451-461.
    20. Jiangao Deng & Cheng Liu & Chunmei Mao, 2024. "Carbon Emissions Drivers and Reduction Strategies in Jiangsu Province," Sustainability, MDPI, vol. 16(13), pages 1-17, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123005087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.