IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i7p4422-4431.html
   My bibliography  Save this article

Renewable energy use in Lebanon: Barriers and solutions

Author

Listed:
  • Kinab, E.
  • Elkhoury, M.

Abstract

The ability to discover and utilize a reliable source of renewable energy is vital in order to reduce the effects of global warming and to decrease and/or eliminate reliance on fossil fuel. Recently, countries around the world have been recognizing the immediate need to tackle the current energy problems. While the developed countries have been investing in renewable energy for the past two decades, developing nations now realize the importance of adopting such energy sourcing strategies [1]. It has long been understood and it is very well-known that energy is the driving force behind economic and social development of a state and its population. The following paper presents an overview of the current renewable energy status in Lebanon. It focuses on barriers hindering improvements and proposes pertinent solutions.

Suggested Citation

  • Kinab, E. & Elkhoury, M., 2012. "Renewable energy use in Lebanon: Barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4422-4431.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4422-4431
    DOI: 10.1016/j.rser.2012.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211200305X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsikalakis, Antonis & Tomtsi, T. & Hatziargyriou, N.D. & Poullikkas, A. & Malamatenios, Ch. & Giakoumelos, E. & Jaouad, O. Cherkaoui & Chenak, A. & Fayek, A. & Matar, T. & Yasin, A., 2011. "Review of best practices of solar electricity resources applications in selected Middle East and North Africa (MENA) countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2838-2849, August.
    2. EL-Shimy, M., 2009. "Viability analysis of PV power plants in Egypt," Renewable Energy, Elsevier, vol. 34(10), pages 2187-2196.
    3. El-Fadel, M. & Chedid, R. & Zeinati, M. & Hmaidan, W., 2003. "Mitigating energy-related GHG emissions through renewable energy," Renewable Energy, Elsevier, vol. 28(8), pages 1257-1276.
    4. Jablonski, Sophie & Tarhini, Mohamad & Touati, Manaf & Gonzalez Garcia, David & Alario, Juan, 2012. "The Mediterranean Solar Plan: Project proposals for renewable energy in the Mediterranean Partner Countries region," Energy Policy, Elsevier, vol. 44(C), pages 291-300.
    5. Chedid, R. & Chaaban, F., 2003. "Renewable-energy developments in Arab countries: a regional perspective," Applied Energy, Elsevier, vol. 74(1-2), pages 211-220, January.
    6. Alnaser, W.E. & Alnaser, N.W., 2011. "The status of renewable energy in the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3074-3098, August.
    7. Ahmed, Ahmed Shata, 2012. "Potential wind power generation in South Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1528-1536.
    8. Avetisyan, Misak & Bayless, David & Gnuni, Tigran, 2006. "Optimal expansion of a developing power system under the conditions of market economy and environmental constraints," Energy Economics, Elsevier, vol. 28(4), pages 455-466, July.
    9. Ghaddar, Nesreen & Mezher, Toufic, 1999. "Modeling of current and future energyintensity and greenhouse gas emissions ofthe Lebanese industrial sector: assessmentof mitigation options," Applied Energy, Elsevier, vol. 63(1), pages 53-74, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dagher, Leila & Ruble, Isabella, 2011. "Modeling Lebanon’s electricity sector: Alternative scenarios and their implications," Energy, Elsevier, vol. 36(7), pages 4315-4326.
    2. Kousksou, T. & Allouhi, A. & Belattar, M. & Jamil, A. & El Rhafiki, T. & Arid, A. & Zeraouli, Y., 2015. "Renewable energy potential and national policy directions for sustainable development in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 46-57.
    3. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    4. Amir A. Imam & Yusuf A. Al-Turki & Sreerama Kumar R., 2019. "Techno-Economic Feasibility Assessment of Grid-Connected PV Systems for Residential Buildings in Saudi Arabia—A Case Study," Sustainability, MDPI, vol. 12(1), pages 1-25, December.
    5. Hamdan, H.A. & Ghajar, R.F. & Chedid, R.B., 2012. "A simulation model for reliability-based appraisal of an energy policy: The case of Lebanon," Energy Policy, Elsevier, vol. 45(C), pages 293-303.
    6. Houda Elmustapha & Thomas Hoppe, 2020. "Challenges and Opportunities of Business Models in Sustainable Transitions: Evidence from Solar Energy Niche Development in Lebanon," Energies, MDPI, vol. 13(3), pages 1-18, February.
    7. Shouman, Enas R. & El Shenawy, E.T. & Khattab, N.M., 2016. "Market financial analysis and cost performance for photovoltaic technology through international and national perspective with case study for Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 540-549.
    8. Hamed Khodayar Sahebi & Siamak Hoseinzadeh & Hossein Ghadamian & Mohammad Hadi Ghasemi & Farbod Esmaeilion & Davide Astiaso Garcia, 2021. "Techno-Economic Analysis and New Design of a Photovoltaic Power Plant by a Direct Radiation Amplification System," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    9. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    10. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    11. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    12. Moataz Elshimy & Khadiga M. El-Aasar, 2020. "Carbon footprint, renewable energy, non-renewable energy, and livestock: testing the environmental Kuznets curve hypothesis for the Arab world," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6985-7012, October.
    13. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    14. Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A passive cooling wind catcher with heat pipe technology: CFD, wind tunnel and field-test analysis," Applied Energy, Elsevier, vol. 162(C), pages 460-471.
    15. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    16. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    17. Asif, M., 2016. "Growth and sustainability trends in the buildings sector in the GCC region with particular reference to the KSA and UAE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1267-1273.
    18. Youssef Kassem & Hüseyin Çamur & Ramzi Aateg Faraj Aateg, 2020. "Exploring Solar and Wind Energy as a Power Generation Source for Solving the Electricity Crisis in Libya," Energies, MDPI, vol. 13(14), pages 1-29, July.
    19. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    20. J. Jed Brown & Probir Das & Mohammad Al-Saidi, 2018. "Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation," Sustainability, MDPI, vol. 10(5), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4422-4431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.