IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i5p3259-3269.html
   My bibliography  Save this article

The districts of Lithuania with low heat demand density: A chance for the integration of straw biomass

Author

Listed:
  • Raslavičius, Laurencas
  • Narbutas, Laimonas
  • Šlančiauskas, Anupras
  • Džiugys, Algis
  • Bazaras, Žilvinas

Abstract

District heating sector is one of the most important sectors of Lithuanian energy industry. Consequently, low-cost bioenergy sources could play an important role in developing biofuels based on the so-called second-generation feedstock and decentralized energy supply for remote rural areas with low heat demand density. The present amount of biomass straw is already considerable in Lithuania but the potential is even much higher. It is assumed that the share of firewood in the balance of RES will decrease significantly – from 86.7% in 2009 to 55% in 2020 and future decisions on the acceptability of new substitutes must be found. The most important factors that could hasten the diffusion of straw combustion technologies for heat-only boilers (HOBs) in order to contribute to a local fuel and low-emission energy infrastructure are political issues, reduction in existing technical thresholds, market and economic conditions, international cooperation activity, and broad experience through wood residue combustion.

Suggested Citation

  • Raslavičius, Laurencas & Narbutas, Laimonas & Šlančiauskas, Anupras & Džiugys, Algis & Bazaras, Žilvinas, 2012. "The districts of Lithuania with low heat demand density: A chance for the integration of straw biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3259-3269.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:3259-3269
    DOI: 10.1016/j.rser.2012.02.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112001542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.02.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Raslavičius, Laurencas & Bazaras, Žilvinas, 2010. "Ecological assessment and economic feasibility to utilize first generation biofuels in cogeneration output cycle – The case of Lithuania," Energy, Elsevier, vol. 35(9), pages 3666-3673.
    3. Raslavicius, Laurencas & Grzybek, Anna & Dubrovin, Valeriy, 2011. "Bioenergy in Ukraine--Possibilities of rural development and opportunities for local communities," Energy Policy, Elsevier, vol. 39(6), pages 3370-3379, June.
    4. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    5. Klevas, Valentinas & Streimikiene, Dalia & Kleviene, Audrone, 2009. "Sustainability assessment of the energy projects implementation in regional scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 155-166, January.
    6. Dodic, Sinisa N. & Zekic, Vladislav N. & Rodic, Vesna O. & Tica, Nedeljko Lj. & Dodic, Jelena M. & Popov, Stevan D., 2011. "Analysis of energetic exploitation of straw in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1147-1151, February.
    7. Pierangeli, Fabio & Henke, Roberto & Coronas, M.G., 2008. "Multifunctional agriculture: an analysis of country specialization and regional differentiation," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44244, European Association of Agricultural Economists.
    8. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
    9. Streimikiene, Dalia & Burneikis, Juozas & Punys, Petras, 2005. "Review of renewable energy use in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(1), pages 29-49, February.
    10. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    11. Katinas, Vladislovas & Markevicius, Antanas & Kavaliauskas, Andrius, 2007. "Current status and prospects of biomass resources for energy production in Lithuania," Renewable Energy, Elsevier, vol. 32(5), pages 884-894.
    12. Miskinis, Vaclovas & Slihta, Gunta & Rudi, Ylo, 2006. "Bio-energy in the Baltic States: Current policy and future development," Energy Policy, Elsevier, vol. 34(18), pages 3953-3964, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonynas, Rolandas & Puida, Egidijus & Poškas, Robertas & Paukštaitis, Linas & Jouhara, Hussam & Gudzinskas, Juozas & Miliauskas, Gintautas & Lukoševičius, Valdas, 2020. "Renewables for district heating: The case of Lithuania," Energy, Elsevier, vol. 211(C).
    2. Raslavičius, Laurencas & Kučinskas, Vytautas & Jasinskas, Algirdas, 2013. "The prospects of energy forestry and agro-residues in the Lithuania's domestic energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 419-431.
    3. Vytautas Bocullo & Linas Martišauskas & Ramūnas Gatautis & Otilija Vonžudaitė & Rimantas Bakas & Darius Milčius & Rytis Venčaitis & Darius Pupeikis, 2023. "A Digital Twin Approach to City Block Renovation Using RES Technologies," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
    4. Raslavičius, Laurencas, 2012. "Renewable energy sector in Belarus: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5399-5413.
    5. Gaigalis, Vygandas & Skema, Romualdas, 2016. "A review on solid biofuel usage in Lithuania after the decommission of Ignalina NPP and compliance with the EU policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 974-988.
    6. Štreimikienė, Dalia & Balezentis, Tomas, 2016. "Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1108-1113.
    7. Kimming, M. & Sundberg, C. & Nordberg, Å. & Hansson, P.-A., 2015. "Vertical integration of local fuel producers into rural district heating systems – Climate impact and production costs," Energy Policy, Elsevier, vol. 78(C), pages 51-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raslavičius, Laurencas & Kučinskas, Vytautas & Jasinskas, Algirdas, 2013. "The prospects of energy forestry and agro-residues in the Lithuania's domestic energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 419-431.
    2. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    3. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    4. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Rachel Namuli & Claude B. Laflamme & Pragasen Pillay, 2011. "A Computer Program for Modeling the Conversion of Organic Waste to Energy," Energies, MDPI, vol. 4(11), pages 1-29, November.
    6. Greggio, Nicolas & Balugani, Enrico & Carlini, Carlotta & Contin, Andrea & Labartino, Nicola & Porcelli, Roberto & Quaranta, Marta & Righi, Serena & Vogli, Luciano & Marazza, Diego, 2019. "Theoretical and unused potential for residual biomasses in the Emilia Romagna Region (Italy) through a revised and portable framework for their categorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 590-606.
    7. Saghaei, Mahsa & Ghaderi, Hadi & Soleimani, Hamed, 2020. "Design and optimization of biomass electricity supply chain with uncertainty in material quality, availability and market demand," Energy, Elsevier, vol. 197(C).
    8. Maria Pergola & Angelo Rita & Alfonso Tortora & Maria Castellaneta & Marco Borghetti & Antonio Sergio De Franchi & Antonio Lapolla & Nicola Moretti & Giovanni Pecora & Domenico Pierangeli & Luigi Toda, 2020. "Identification of Suitable Areas for Biomass Power Plant Construction through Environmental Impact Assessment of Forest Harvesting Residues Transportation," Energies, MDPI, vol. 13(11), pages 1-16, May.
    9. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik & Naqvi, Salman Raza, 2017. "Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis," Applied Energy, Elsevier, vol. 201(C), pages 363-370.
    10. Bajwa, Dilpreet S. & Peterson, Tyler & Sharma, Neeta & Shojaeiarani, Jamileh & Bajwa, Sreekala G., 2018. "A review of densified solid biomass for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 296-305.
    11. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    12. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    13. Vargas-Moreno, J.M. & Callejón-Ferre, A.J. & Pérez-Alonso, J. & Velázquez-Martí, B., 2012. "A review of the mathematical models for predicting the heating value of biomass materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3065-3083.
    14. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    15. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    16. Raslavičius, Laurencas, 2012. "Renewable energy sector in Belarus: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5399-5413.
    17. Pin, Lantos A. & Pennink, Bartjan J.W. & Balsters, Herman & Sianipar, Corinthias P.M., 2021. "Technological appropriateness of biomass production in rural settings: Addressing water hyacinths (E. crassipes) problem in Lake Tondano, Indonesia," Technology in Society, Elsevier, vol. 66(C).
    18. Raslavičius, Laurencas & Keršys, Artūras & Starevičius, Martynas & Sapragonas, Jonas & Bazaras, Žilvinas, 2014. "Biofuels, sustainability and the transport sector in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 328-346.
    19. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 621-632.
    20. Đerčan, Bojan & Lukić, Tamara & Bubalo-Živković, Milka & Đurđev, Branislav & Stojsavljević, Rastislav & Pantelić, Milana, 2012. "Possibility of efficient utilization of wood waste as a renewable energy resource in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1516-1527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:3259-3269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.