IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i5p2501-2509.html
   My bibliography  Save this article

History and potential of renewable energy development in New Zealand

Author

Listed:
  • Kelly, Geoff

Abstract

Many years before greenhouse gas emission reduction became a major driver for renewable energy development, New Zealand was an early adopter of several alternative energy technologies, particularly hydroelectricity and geothermal energy. It has achieved a level of 60% of total electricity generation from such sources, and is now pursuing a target of 95% of electricity generation from renewable energy, to be achieved in fifteen years. In recent years, however, the development of renewables has lagged that of other countries, particularly in fields such as wind power. The paper reviews the history, current status and potential of the major renewable energy technologies in New Zealand, and suggests what may be current barriers to development. It is seen that the likely major contributors to replacing fossil fuel based energy are likely to be wind power and expanded geothermal energy use, with biomass, marine and solar energy sources likely to play a lesser role. The barriers to development include environmental issues, the opportunity cost of biomass feedstocks, and a policy environment offering less incentive to RE development than is the case in many other countries.

Suggested Citation

  • Kelly, Geoff, 2011. "History and potential of renewable energy development in New Zealand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2501-2509, June.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:5:p:2501-2509
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(11)00070-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Graham, Jessica B. & Stephenson, Janet R. & Smith, Inga J., 2009. "Public perceptions of wind energy developments: Case studies from New Zealand," Energy Policy, Elsevier, vol. 37(9), pages 3348-3357, September.
    2. Roulleau, T. & Lloyd, C.R., 2008. "International policy issues regarding solar water heating, with a focus on New Zealand," Energy Policy, Elsevier, vol. 36(6), pages 1843-1857, June.
    3. Barry, Martin & Chapman, Ralph, 2009. "Distributed small-scale wind in New Zealand: Advantages, barriers and policy support instruments," Energy Policy, Elsevier, vol. 37(9), pages 3358-3369, September.
    4. Mason, I.G. & Page, S.C. & Williamson, A.G., 2010. "A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources," Energy Policy, Elsevier, vol. 38(8), pages 3973-3984, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoicka, Christina E. & MacArthur, Julie L., 2018. "From tip to toes: Mapping community energy models in Canada and New Zealand," Energy Policy, Elsevier, vol. 121(C), pages 162-174.
    2. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    4. Suomalainen, Kiti & Pritchard, Geoffrey & Sharp, Basil & Yuan, Ziqi & Zakeri, Golbon, 2015. "Correlation analysis on wind and hydro resources with electricity demand and prices in New Zealand," Applied Energy, Elsevier, vol. 137(C), pages 445-462.
    5. Kubota, Hiromi & Hondo, Hiroki & Hienuki, Shunichi & Kaieda, Hideshi, 2013. "Determining barriers to developing geothermal power generation in Japan: Societal acceptance by stakeholders involved in hot springs," Energy Policy, Elsevier, vol. 61(C), pages 1079-1087.
    6. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    7. Ashish Gulagi & Dmitrii Bogdanov & Christian Breyer, 2017. "A Cost Optimized Fully Sustainable Power System for Southeast Asia and the Pacific Rim," Energies, MDPI, vol. 10(5), pages 1-25, April.
    8. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    9. White, Lee V. & Lloyd, Bob & Wakes, Sarah J., 2013. "Are Feed-in Tariffs suitable for promoting solar PV in New Zealand cities?," Energy Policy, Elsevier, vol. 60(C), pages 167-178.
    10. Nisar, Arsalan & Monroy, Carlos Rodríguez, 2012. "Potential of the renewable energy development in Jammu and Kashmir, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5260-5267.
    11. Kear, Gareth & Chapman, Ralph, 2013. "‘Reserving judgement’: Perceptions of pumped hydro and utility-scale batteries for electricity storage and reserve generation in New Zealand," Renewable Energy, Elsevier, vol. 57(C), pages 249-261.
    12. Chang, Youngho & Fang, Zheng & Li, Yanfei, 2016. "Renewable energy policies in promoting financing and investment among the East Asia Summit countries: Quantitative assessment and policy implications," Energy Policy, Elsevier, vol. 95(C), pages 427-436.
    13. Schumacher, Kim, 2019. "Approval procedures for large-scale renewable energy installations: Comparison of national legal frameworks in Japan, New Zealand, the EU and the US," Energy Policy, Elsevier, vol. 129(C), pages 139-152.
    14. Cook, David & Davíðsdóttir, Brynhildur & Malinauskaite, Laura, 2020. "A cascade model and initial exploration of co-production processes underpinning the ecosystem services of geothermal areas," Renewable Energy, Elsevier, vol. 161(C), pages 917-927.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Pao-Long & Ho, Shu-Ping & Hsu, Chiung-Wen, 2013. "Dynamic simulation of government subsidy policy effects on solar water heaters installation in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 385-396.
    2. Gardt Manuel & Broekel Tom & Gareis Philipp & Litmeyer Marie-Louise, 2018. "Einfluss von Windenergieanlagen auf die Entwicklung des Tourismus in Hessen," ZFW – Advances in Economic Geography, De Gruyter, vol. 62(1), pages 46-64, March.
    3. Wirth, Steffen, 2014. "Communities matter: Institutional preconditions for community renewable energy," Energy Policy, Elsevier, vol. 70(C), pages 236-246.
    4. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    5. Hamed Pourzolfaghar & Faisal Abnisa & Wan Mohd Ashri Wan Daud & Mohamed Kheireddine Aroua & Teuku Meurah Indra Mahlia, 2020. "Catalyst Characteristics and Performance of Silica-Supported Zinc for Hydrodeoxygenation of Phenol," Energies, MDPI, vol. 13(11), pages 1-13, June.
    6. Grieve, Campbell & Lawson, Rob & Henry, James, 2012. "Understanding the non-adoption of energy efficient hot water systems in New Zealand," Energy Policy, Elsevier, vol. 48(C), pages 369-373.
    7. Fernandes, Liliana & Ferreira, Paula, 2014. "Renewable energy scenarios in the Portuguese electricity system," Energy, Elsevier, vol. 69(C), pages 51-57.
    8. Cansino, José M. & Pablo-Romero, María del P. & Román, Rocío & Yñiguez, Rocío, 2011. "Promoting renewable energy sources for heating and cooling in EU-27 countries," Energy Policy, Elsevier, vol. 39(6), pages 3803-3812, June.
    9. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    10. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    11. Yi-Mei Liu & Kung-Ming Chung & Keh-Chin Chang & Tsong-Sheng Lee, 2012. "Performance of Thermosyphon Solar Water Heaters in Series," Energies, MDPI, vol. 5(9), pages 1-13, August.
    12. Kiwan, Suhil & Al-Gharibeh, Elyasa, 2020. "Jordan toward a 100% renewable electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 423-436.
    13. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    14. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    15. Schaefer, Manuel S. & Lloyd, Bob & Stephenson, Janet R., 2012. "The suitability of a feed-in tariff for wind energy in New Zealand—A study based on stakeholders' perspectives," Energy Policy, Elsevier, vol. 43(C), pages 80-91.
    16. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    17. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    18. Justyna Chodkowska-Miszczuk & Jadwiga Biegańska & Stefania Środa-Murawska & Elżbieta Grzelak-Kostulska & Krzysztof Rogatka, 2016. "European Union funds in the development of renewable energy sources in Poland in the context of the cohesion policy," Energy & Environment, , vol. 27(6-7), pages 713-725, November.
    19. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    20. Jacqueline Corbett, 2013. "Using information systems to improve energy efficiency: Do smart meters make a difference?," Information Systems Frontiers, Springer, vol. 15(5), pages 747-760, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:5:p:2501-2509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.