IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v156y2022ics136403212101248x.html
   My bibliography  Save this article

A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells

Author

Listed:
  • Vinoth Kumar, R.
  • Khandale, A.P.

Abstract

Solid oxide fuel cells (SOFCs) are versatile, and highly efficient power source perceived as future of the energy. Lower operating temperatures in the range of 400–600 °C can considerably increase applications for this technology and can facilitate use of a wider variety of materials in SOFC with greater reliability. Sluggish oxygen reduction kinetics and long-term chemical instability of cathode restricts practical use of low temperature (LT)-SOFC. This review article focusses on the potential cobalt-based cathodes showing promising electrocatalytic activity at low temperatures (≤600 °C). Combine use of novel elements in the architecture of SOFC and incorporating advances in new materials can enable operation of LT-SOFC with higher efficiency. Based on the review conducted, it is found that anode supported SOFC based on SrCo0·8Nb0·1Ta0·1O3−δ cathode and GDC electrolyte exhibits excellent electrochemical performance (1200 mW cm−2) below 500 °C, so far. Ni-GDC anode supported cell based on thin film GDC electrolyte and Ba0·5Sr0·5Co0·8Fe0·2O3-δ cathode shows a power output of 454 mW cm−2 at 500 °C, which is higher than La0·6Sr0·4Co0·2Fe0·8O3 and Sm0.5Sr0·5CoO3-δ-based cathodes however still lower than SrCo0·8Nb0·1Ta0·1O3−δ at same operating conditions and suffers CO2 poisoning. In contrast, Cr and Si poisoning in case of double perovskites restrict their use below 600 °C. Further, cathode performance and its stability can be enhanced by the decoration of metal nanoparticles or thin-films on cathodes. Metal exsolved perovskite cathode shows better performance and long-term stability compare to wet impregnated cathode, as the nanoparticles are firmly anchored to the oxide surface. Thus, novel strategies are highly desired for the development of cathode to achieve highly efficient LT-SOFC as sensible power source resulting into the stability of our environment, energy supply, and economy.

Suggested Citation

  • Vinoth Kumar, R. & Khandale, A.P., 2022. "A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:rensus:v:156:y:2022:i:c:s136403212101248x
    DOI: 10.1016/j.rser.2021.111985
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212101248X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zongping Shao & Sossina M. Haile, 2004. "A high-performance cathode for the next generation of solid-oxide fuel cells," Nature, Nature, vol. 431(7005), pages 170-173, September.
    2. Jin Goo Lee & Jeong Ho Park & Yong Gun Shul, 2014. "Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm−2 at 550 °C," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    3. Brian C. H. Steele & Angelika Heinzel, 2001. "Materials for fuel-cell technologies," Nature, Nature, vol. 414(6861), pages 345-352, November.
    4. Chen Xia & Youquan Mi & Baoyuan Wang & Bin Lin & Gang Chen & Bin Zhu, 2019. "Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Komatsu, Y. & Brus, G. & Kimijima, S. & Szmyd, J.S., 2014. "The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage," Applied Energy, Elsevier, vol. 115(C), pages 352-359.
    6. Mengran Li & Mingwen Zhao & Feng Li & Wei Zhou & Vanessa K. Peterson & Xiaoyong Xu & Zongping Shao & Ian Gentle & Zhonghua Zhu, 2017. "A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadezhda S. Tsvetkova & Dmitry A. Malyshkin & Ivan L. Ivanov & Dmitry S. Tsvetkov & Andrey Yu. Zuev, 2023. "Implications of Cation Interdiffusion between Double Perovskite Cathode and Proton-Conducting Electrolyte for Performance of Solid Oxide Fuel Cells," Energies, MDPI, vol. 16(7), pages 1-12, March.
    2. Lu, Yuzheng & Mushtaq, Naveed & Yousaf Shah, M.A.K. & Irshad, Muhammad Sultan & Rauf, Sajid & Xia, Chen & Yousaf, Muhammad & Raza, Rizwan & Lund, Peter D. & Zhu, Bin, 2022. "Improved self-consistency and oxygen reduction activity of CaFe2O4 for protonic ceramic fuel cell by porous NiO-foam support," Renewable Energy, Elsevier, vol. 199(C), pages 1451-1460.
    3. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Meng, Xin & Deng, Bohao & Wu, Weifeng & Zhao, Pan, 2023. "Thermodynamic analysis of a novel combined heating and power system based on low temperature solid oxide fuel cell (LT-SOFC) and high temperature proton exchange membrane fuel cell (HT-PEMFC)," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    2. Shah, M.A.K. Yousaf & Lu, Yuzheng & Mushtaq, Naveed & Yousaf, Muhammad & Akbar, Nabeela & Xia, Chen & Yun, Sining & Zhu, Bin, 2023. "Semiconductor-membrane fuel cell (SMFC) for renewable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Zhu, Bin & Fan, Liangdong & Lund, Peter, 2013. "Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites," Applied Energy, Elsevier, vol. 106(C), pages 163-175.
    4. Takaya Ogawa & Mizutomo Takeuchi & Yuya Kajikawa, 2018. "Comprehensive Analysis of Trends and Emerging Technologies in All Types of Fuel Cells Based on a Computational Method," Sustainability, MDPI, vol. 10(2), pages 1-30, February.
    5. Wang, Yuan & Cai, Ling & Liu, Tie & Wang, Junyi & Chen, Jincan, 2015. "An efficient strategy exploiting the waste heat in a solid oxide fuel cell system," Energy, Elsevier, vol. 93(P1), pages 900-907.
    6. Kai Pei & Yucun Zhou & Kang Xu & Hua Zhang & Yong Ding & Bote Zhao & Wei Yuan & Kotaro Sasaki & YongMan Choi & Yu Chen & Meilin Liu, 2022. "Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Mohsen Fallah Vostakola & Bahman Amini Horri, 2021. "Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review," Energies, MDPI, vol. 14(5), pages 1-53, February.
    8. Yan, Min & Fu, Pei & Li, Xiang & Zeng, Min & Wang, Qiuwang, 2015. "Mass transfer enhancement of a spiral-like interconnector for planar solid oxide fuel cells," Applied Energy, Elsevier, vol. 160(C), pages 954-964.
    9. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    10. Sethu Sundar Pethaiah & Kishor Kumar Sadasivuni & Arunkumar Jayakumar & Deepalekshmi Ponnamma & Chandra Sekhar Tiwary & Gangadharan Sasikumar, 2020. "Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
    11. Lv, Xiuqing & Chen, Huili & Zhou, Wei & Li, Si-Dian & Cheng, Fangqin & Shao, Zongping, 2022. "SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells," Renewable Energy, Elsevier, vol. 185(C), pages 8-16.
    12. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    13. Hu, Enyi & Wang, Faze & Yousaf, Muhammad & Wang, Jun & Lund, Peter & Wang, Jinping & Zhu, Bin, 2022. "Synergistic effect of sodium content for tuning Sm2O3 as a stable electrolyte in proton ceramic fuel cells," Renewable Energy, Elsevier, vol. 193(C), pages 608-616.
    14. Fardadi, Mahshid & McLarty, Dustin F. & Jabbari, Faryar, 2016. "Investigation of thermal control for different SOFC flow geometries," Applied Energy, Elsevier, vol. 178(C), pages 43-55.
    15. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    16. Saurabh Singh & Raghvendra Pandey & Sabrina Presto & Maria Paola Carpanese & Antonio Barbucci & Massimo Viviani & Prabhakar Singh, 2019. "Suitability of Sm 3+ - Substituted SrTiO 3 as Anode Materials for Solid Oxide Fuel Cells: A Correlation between Structural and Electrical Properties," Energies, MDPI, vol. 12(21), pages 1-16, October.
    17. Elmer, Theo & Worall, Mark & Wu, Shenyi & Riffat, Saffa B., 2015. "Fuel cell technology for domestic built environment applications: State of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 913-931.
    18. Teixeira, Fátima C. & Teixeira, António P.S. & Rangel, C.M., 2022. "New proton conductive membranes of indazole- and condensed pyrazolebisphosphonic acid-Nafion membranes for PEMFC," Renewable Energy, Elsevier, vol. 196(C), pages 1187-1196.
    19. Jine Wu & Chenyi Liao & Tianyu Li & Jing Zhou & Linjuan Zhang & Jian-Qiang Wang & Guohui Li & Xianfeng Li, 2023. "Metal-coordinated polybenzimidazole membranes with preferential K+ transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Edoardo Magnone, 2014. "A novel graphical representation of sentence complexity: the description and its application," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1301-1329, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:156:y:2022:i:c:s136403212101248x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.