IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics1364032121006894.html
   My bibliography  Save this article

A comprehensive review of Enviro-Exergo-economic analysis of solar stills

Author

Listed:
  • Shoeibi, Shahin
  • Rahbar, Nader
  • Abedini Esfahlani, Ahad
  • Kargarsharifabad, Hadi

Abstract

Solar stills are well-known tools utilized for producing fresh water from brackish or salty water. Their easy and environmentally friendly operation and low construction cost are the main advantages of these systems. However, low amounts of water production have increased the price of freshwater in these systems. Therefore, economic analysis is the main part of every experimental and numerical study in the field of solar water desalination. Over the recent years, in addition to the economic analysis, the environmental impacts and carbon credit earn of these devices have been found to be of great importance in the solar desalination studies. This research was conducted to review different techniques used to optimize these systems considering the productivity and economic and environmental analysis. Moreover, a comprehensive attempt was made to compare the cost of fabrication, exergoeconomic analysis, CO2 mitigation, enviroeconomic analysis of various geometry and designs of these systems. Finally, a summary of the comparison between previous studies were presented and discussed in details in order to give researchers a better view of cost-effective and environmentally friendly designs of solar stills. Our results revealed that the overall water production cost of solar stills was reported to be between 0.0014 and 0.29 $/L while the highest CO2 mitigation during life time was estimated to be about 1129.53 tons in the solar still combined with photovoltaic/thermal and solar collector.

Suggested Citation

  • Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2021. "A comprehensive review of Enviro-Exergo-economic analysis of solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006894
    DOI: 10.1016/j.rser.2021.111404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Shiv & Tiwari, G.N., 2009. "Life cycle cost analysis of single slope hybrid (PV/T) active solar still," Applied Energy, Elsevier, vol. 86(10), pages 1995-2004, October.
    2. Kosmadakis, G. & Manolakos, D. & Kyritsis, S. & Papadakis, G., 2009. "Economic assessment of a two-stage solar organic Rankine cycle for reverse osmosis desalination," Renewable Energy, Elsevier, vol. 34(6), pages 1579-1586.
    3. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    4. Caliskan, Hakan, 2017. "Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 488-492.
    5. Sharshir, S.W. & Peng, Guilong & Wu, Lirong & Essa, F.A. & Kabeel, A.E. & Yang, Nuo, 2017. "The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance," Applied Energy, Elsevier, vol. 191(C), pages 358-366.
    6. Sharon, H. & Reddy, K.S., 2015. "Performance investigation and enviro-economic analysis of active vertical solar distillation units," Energy, Elsevier, vol. 84(C), pages 794-807.
    7. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2020. "Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis," Applied Energy, Elsevier, vol. 263(C).
    8. Kianifar, Ali & Zeinali Heris, Saeed & Mahian, Omid, 2012. "Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases," Energy, Elsevier, vol. 38(1), pages 31-36.
    9. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    10. Dumka, Pankaj & Mishra, Dhananjay R., 2020. "Performance evaluation of single slope solar still augmented with the ultrasonic fogger," Energy, Elsevier, vol. 190(C).
    11. Hassan, Hamdy & Yousef, Mohamed S. & Fathy, Mohamed & Ahmed, M. Salem, 2020. "Assessment of parabolic trough solar collector assisted solar still at various saline water mediums via energy, exergy, exergoeconomic, and enviroeconomic approaches," Renewable Energy, Elsevier, vol. 155(C), pages 604-616.
    12. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    13. Khalilmoghadam, Pooria & Rajabi-Ghahnavieh, Abbas & Shafii, Mohammad Behshad, 2021. "A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe," Renewable Energy, Elsevier, vol. 163(C), pages 2115-2127.
    14. Singh, Shobhana & Kumar, Subodh, 2013. "Solar drying for different test conditions: Proposed framework for estimation of specific energy consumption and CO2 emissions mitigation," Energy, Elsevier, vol. 51(C), pages 27-36.
    15. Kabeel, A.E., 2009. "Performance of solar still with a concave wick evaporation surface," Energy, Elsevier, vol. 34(10), pages 1504-1509.
    16. Kabeel, A.E. & Hamed, A.M. & El-Agouz, S.A., 2010. "Cost analysis of different solar still configurations," Energy, Elsevier, vol. 35(7), pages 2901-2908.
    17. M. Mohamed Thalib & Athikesavan Muthu Manokar & Fadl A. Essa & N. Vasimalai & Ravishankar Sathyamurthy & Fausto Pedro Garcia Marquez, 2020. "Comparative Study of Tubular Solar Stills with Phase Change Material and Nano-Enhanced Phase Change Material," Energies, MDPI, vol. 13(15), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shatar, Nursyahirah Mohd & Sabri, Mohd Faizul Mohd & Salleh, Mohd Faiz Mohd & Ani, Mohd Hanafi, 2023. "Investigation on the performance of solar still with thermoelectric cooling system for various cover material," Renewable Energy, Elsevier, vol. 202(C), pages 844-854.
    2. Dhivagar, Ramasamy & Shoeibi, Shahin & Parsa, Seyed Masoud & Hoseinzadeh, Siamak & Kargarsharifabad, Hadi & Khiadani, Mehdi, 2023. "Performance evaluation of solar still using energy storage biomaterial with porous surface: An experimental study and environmental analysis," Renewable Energy, Elsevier, vol. 206(C), pages 879-889.
    3. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    2. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).
    3. He Fu & Min Dai & Hanwen Song & Xiaoting Hou & Fahid Riaz & Shuai Li & Ke Yang & Imran Ali & Changsheng Peng & Muhammad Sultan, 2021. "Updates on Evaporation and Condensation Methods for the Performance Improvement of Solar Stills," Energies, MDPI, vol. 14(21), pages 1-26, October.
    4. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    5. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    6. Shoeibi, Shahin & Rahbar, Nader & Abedini Esfahlani, Ahad & Kargarsharifabad, Hadi, 2020. "Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: An experimental study and exergy analysis," Applied Energy, Elsevier, vol. 263(C).
    7. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Siti Fairuz Juiani & Norazian Mohamed Noor & Mohd Hafiz Zawawi & Jazaul Ikhsan, 2022. "Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    8. Heydari, Ali, 2022. "Experimental analysis of hybrid dryer combined with spiral solar air heater and auxiliary heating system: Energy, exergy and economic analysis," Renewable Energy, Elsevier, vol. 198(C), pages 1162-1175.
    9. Singh, D.B., 2018. "Energy metrics analysis of N identical evacuated tubular collectors integrated single slope solar still," Energy, Elsevier, vol. 148(C), pages 546-560.
    10. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    11. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    12. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Vishwanath Kumar, P. & Kumar, Anil & Prakash, Om & Kaviti, Ajay Kumar, 2015. "Solar stills system design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 153-181.
    14. Mohaisen, H.S. & Esfahani, J.A. & Ayani, M.B., 2021. "Improvement in the performance and cost of passive solar stills using a finned-wall/built-in condenser: An experimental study," Renewable Energy, Elsevier, vol. 168(C), pages 170-180.
    15. Sharon, H. & Reddy, K.S., 2015. "Performance investigation and enviro-economic analysis of active vertical solar distillation units," Energy, Elsevier, vol. 84(C), pages 794-807.
    16. Ranjan, K.R. & Kaushik, S.C., 2013. "Energy, exergy and thermo-economic analysis of solar distillation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 709-723.
    17. Ali O. Al-Sulttani & Amimul Ahsan & Basim A. R. Al-Bakri & Mahir Mahmod Hason & Nik Norsyahariati Nik Daud & S. Idrus & Omer A. Alawi & Elżbieta Macioszek & Zaher Mundher Yaseen, 2022. "Double-Slope Solar Still Productivity Based on the Number of Rubber Scraper Motions," Energies, MDPI, vol. 15(21), pages 1-34, October.
    18. Sathyamurthy, Ravishankar & El-Agouz, S.A. & Nagarajan, P.K. & Subramani, J. & Arunkumar, T. & Mageshbabu, D. & Madhu, B. & Bharathwaaj, R. & Prakash, N., 2017. "A Review of integrating solar collectors to solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1069-1097.
    19. Al-Sulttani, Ali O. & Ahsan, Amimul & Hanoon, Ammar N. & Rahman, A. & Daud, N.N.N. & Idrus, S., 2017. "Hourly yield prediction of a double-slope solar still hybrid with rubber scrapers in low-latitude areas based on the particle swarm optimization technique," Applied Energy, Elsevier, vol. 203(C), pages 280-303.
    20. Shatar, Nursyahirah Mohd & Sabri, Mohd Faizul Mohd & Salleh, Mohd Faiz Mohd & Ani, Mohd Hanafi, 2023. "Investigation on the performance of solar still with thermoelectric cooling system for various cover material," Renewable Energy, Elsevier, vol. 202(C), pages 844-854.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.