IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v146y2021ics136403212100438x.html
   My bibliography  Save this article

Analysis of green building performance in cold coastal climates: An in-depth evaluation of green buildings in Dalian, China

Author

Listed:
  • Su, Yuan
  • Wang, Linwei
  • Feng, Wei
  • Zhou, Nan
  • Wang, Luyuan

Abstract

This study described here evaluated certified green building projects in Dalian, a typical coastal city in a cold region of China, from 2008 to 2017. Of 16 surveyed cases in Dalian, 73% adopted a high-performance building envelope system. Energy-saving technologies were favored and demonstrated worthwhile economic benefits. In 80% of the cases high-performance green materials had been used. Resource-saving technologies also were widely adopted. In addition to analyzing all the data collected, the study under-took an in-depth analysis of one building. A representative three-star green public building in Dalian, China, was chosen as a case study for analyzing the energy consumption and operating performance. The study found that energy use intensity of the case-study building is 68.02 kW-hours per square meter per year(kWh/(m2・a)). It saves 44.14 kWh/m2・a compared with a conventional building in the same climate, thanks to its energy efficiency systems and integration of renewable energy. The water consumption of the building when operating was 0.41 cubic meter per square meter(m3/m2) per year, which is even lower than the design value. The case-study building also demonstrated good indoor environmental quality throughout different seasons. Finally, practical methods and suggestions were derived from evaluating and discussing effective technologies in the 16 buildings surveyed. The research led to recommendations for developing green buildings in cold and coastal climates. It also provides a substantial guidance for the energy-saving design of green buildings and the application of appropriate technologies in cold coastal cities.

Suggested Citation

  • Su, Yuan & Wang, Linwei & Feng, Wei & Zhou, Nan & Wang, Luyuan, 2021. "Analysis of green building performance in cold coastal climates: An in-depth evaluation of green buildings in Dalian, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:rensus:v:146:y:2021:i:c:s136403212100438x
    DOI: 10.1016/j.rser.2021.111149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100438X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shilei Lu & Minchao Fan & Yiqun Zhao, 2018. "A System to Pre-Evaluate the Suitability of Energy-Saving Technology for Green Buildings," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    2. Wang, Xiaoxiao & Wang, Nan & Liu, Xiangfeng & Shi, Ruiting, 2017. "Energy-saving analysis for the Modern Wing of the Art Institute of Chicago and green city strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 714-729.
    3. Shilei Lu & Zichen Wang & Tianshuai Zhang, 2020. "Quantitative Analysis and Multi-Index Evaluation of the Green Building Envelope Performance in the Cold Area of China," Sustainability, MDPI, vol. 12(1), pages 1-38, January.
    4. Rosiek, Sabina & Batlles, Francisco Javier, 2013. "Renewable energy solutions for building cooling, heating and power system installed in an institutional building: Case study in southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 147-168.
    5. Xiaohuan Xie & Shiyu Qin & Zhonghua Gou & Ming Yi, 2020. "Can Green Building Promote Pro-Environmental Behaviours? The Psychological Model and Design Strategy," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    6. Qian Shi & Jian Zuo & George Zillante, 2012. "Exploring the management of sustainable construction at the programme level: a Chinese case study," Construction Management and Economics, Taylor & Francis Journals, vol. 30(6), pages 425-440, April.
    7. Chen, Xi & Yang, Hongxing & Lu, Lin, 2015. "A comprehensive review on passive design approaches in green building rating tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1425-1436.
    8. Mondol, Jayanta Deb & Koumpetsos, Nikos, 2013. "Overview of challenges, prospects, environmental impacts and policies for renewable energy and sustainable development in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 431-442.
    9. Ye, Ling & Cheng, Zhijun & Wang, Qingqin & Lin, Wenshi & Ren, Feifei, 2013. "Overview on Green Building Label in China," Renewable Energy, Elsevier, vol. 53(C), pages 220-229.
    10. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    11. Polina Trofimova & Ali Cheshmehzangi & Wu Deng & Craig Hancock, 2021. "Post-Occupancy Evaluation of Indoor Air Quality and Thermal Performance in a Zero Carbon Building," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    12. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Margherita Mastellone & Giuseppe Peter Vanoli, 2019. "Phase Change Materials for Reducing Cooling Energy Demand and Improving Indoor Comfort: A Step-by-Step Retrofit of a Mediterranean Educational Building," Energies, MDPI, vol. 12(19), pages 1-32, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Wenhua & Liu, Pei & Lin, Borong & Zhou, Hao & Chen, Xuesheng, 2022. "Green finance support for development of green buildings in China: Effect, mechanism, and policy implications," Energy Policy, Elsevier, vol. 165(C).
    2. Natalia Shushunova & Elena Korol & Elisaveta Luzay & Diana Shafieva & Piero Bevilacqua, 2022. "Ensuring the Safety of Buildings by Reducing the Noise Impact through the Use of Green Wall Systems," Energies, MDPI, vol. 15(21), pages 1-11, October.
    3. Yin, Linfei & Tao, Min, 2023. "Balanced broad learning prediction model for carbon emissions of integrated energy systems considering distributed ground source heat pump heat storage systems and carbon capture & storage," Applied Energy, Elsevier, vol. 329(C).
    4. Amjad Almusaed & Asaad Almssad & Asaad Alasadi & Ibrahim Yitmen & Sammera Al-Samaraee, 2023. "Assessing the Role and Efficiency of Thermal Insulation by the “BIO-GREEN PANEL” in Enhancing Sustainability in a Built Environment," Sustainability, MDPI, vol. 15(13), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo, Jian & Zhao, Zhen-Yu, 2014. "Green building research–current status and future agenda: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 271-281.
    2. Zhenmin Yuan & Jianliang Zhou & Yaning Qiao & Yadi Zhang & Dandan Liu & Hui Zhu, 2020. "BIM-VE-Based Optimization of Green Building Envelope from the Perspective of both Energy Saving and Life Cycle Cost," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    3. Zhang, Xiaoling, 2015. "Green real estate development in China: State of art and prospect agenda—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 1-13.
    4. Mishan Shrestha & Hom Bahadur Rijal, 2023. "Investigation on Summer Thermal Comfort and Passive Thermal Improvements in Naturally Ventilated Nepalese School Buildings," Energies, MDPI, vol. 16(3), pages 1-33, January.
    5. Drosou, Vassiliki & Kosmopoulos, Panos & Papadopoulos, Agis, 2016. "Solar cooling system using concentrating collectors for office buildings: A case study for Greece," Renewable Energy, Elsevier, vol. 97(C), pages 697-708.
    6. Zhang, Li & Wu, Jing & Liu, Hongyu, 2018. "Policies to enhance the drivers of green housing development in China," Energy Policy, Elsevier, vol. 121(C), pages 225-235.
    7. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    8. Ahmet Bircan Atmaca & Gülay Zorer Gedik & Andreas Wagner, 2021. "Determination of Optimum Envelope of Religious Buildings in Terms of Thermal Comfort and Energy Consumption: Mosque Cases," Energies, MDPI, vol. 14(20), pages 1-17, October.
    9. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    10. Lim, Xin-Jean & Cheah, Jun-Hwa & Ngo, Liem Viet & Chan, Kara & Ting, Hiram, 2023. "How do crazy rich Asians perceive sustainable luxury? Investigating the determinants of consumers’ willingness to pay a premium price," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    11. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    12. Sayani Saha & Rahul B Hiremath & Sanjay Prasad & Bimlesh Kumar, 2021. "Barriers to Adoption of Commercial Green Buildings in India: A Review," Journal of Infrastructure Development, India Development Foundation, vol. 13(2), pages 107-128, December.
    13. Ramos-Teodoro, Jerónimo & Rodríguez, Francisco & Berenguel, Manuel & Torres, José Luis, 2018. "Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example," Applied Energy, Elsevier, vol. 229(C), pages 537-550.
    14. Michal Gluszak & Agnieszka Malkowska & Bartłomiej Marona, 2021. "Green Building Adoption on Office Markets in Europe: An Empirical Investigation into LEED Certification," Energies, MDPI, vol. 14(7), pages 1-12, April.
    15. John Foster & Liam Wagner, 2014. "International experience with transformations in electricity markets: A Short Literature Review," Energy Economics and Management Group Working Papers 2-2014, School of Economics, University of Queensland, Australia.
    16. Guangdong Wu & Guofeng Qiang & Jian Zuo & Xianbo Zhao & Ruidong Chang, 2018. "What are the Key Indicators of Mega Sustainable Construction Projects? —A Stakeholder-Network Perspective," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    17. Aiman Albatayneh & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings," Energies, MDPI, vol. 14(17), pages 1-20, September.
    18. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    19. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    20. Zhong Fang & Hongrui Zhang & Jianlin Wang & Junbo Tong & Xiaoxiao Li, 2022. "The Coupling and Coordinated Development of Green Builds and Financial Development in China," IJERPH, MDPI, vol. 19(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:146:y:2021:i:c:s136403212100438x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.