IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3661-d270534.html
   My bibliography  Save this article

Phase Change Materials for Reducing Cooling Energy Demand and Improving Indoor Comfort: A Step-by-Step Retrofit of a Mediterranean Educational Building

Author

Listed:
  • Fabrizio Ascione

    (Department of Industrial Engineering, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (NA), Italy)

  • Nicola Bianco

    (Department of Industrial Engineering, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (NA), Italy)

  • Rosa Francesca De Masi

    (Department of Engineering, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento (BN), Italy)

  • Margherita Mastellone

    (Department of Industrial Engineering, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (NA), Italy)

  • Giuseppe Peter Vanoli

    (Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, Via Francesco De Sanctis 1, 86100 Campobasso (CB), Italy)

Abstract

The present work concerns the energy retrofit of a public educational building at the University of Molise, located in Termoli, South Italy. The study provides a comparison of the results obtained by different dynamic simulations of passive strategies to improve thermal comfort and energy behavior of the building during the summer regime. Firstly, the building model was calibrated against historical consumption data. Then, a subsequent step involves the technical-economic analysis, by means of building performance simulations, of energy upgrading scenarios, specifically, cool roof and green roof technologies for the horizontal opaque envelope and thermal insulation, vented façade, and phase change materials’ applications for the vertical opaque envelope. Improving the indoor thermal comfort and reducing the thermal energy demand during summertime through innovative solutions will be the primary objective of the present study. The energy efficiency measures are compared from the energy, emissions, costs, and indoor comfort points of view. Phase Change Materials applied to the inner side of the external walls are analyzed in depth and, by varying their melting temperature, optimization of design is performed too. This innovative material, with a melting temperature of 23 °C and a freezing temperature of 21 °C, determines the reduction of summer energy consumption of 11.7% and the increase of summer indoor comfort of 215 h. Even if consolidated, other solutions, like the cool roof, green roof, thermal insulation, and vented façade induce improvements in terms of summer energy saving, and the percentage difference compared to the basic building is less than 2%. For this case study, a Mediterranean building, with construction characteristics typical of the 1990s, traditional passive technologies are not very efficient in improving the energy performance, so the investigation focused on the adoption of innovative solutions such as PCMs, for reducing summer energy demand and improving indoor thermal comfort.

Suggested Citation

  • Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Margherita Mastellone & Giuseppe Peter Vanoli, 2019. "Phase Change Materials for Reducing Cooling Energy Demand and Improving Indoor Comfort: A Step-by-Step Retrofit of a Mediterranean Educational Building," Energies, MDPI, vol. 12(19), pages 1-32, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3661-:d:270534
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3661/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3661/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gil-Baez, Maite & Padura, Ángela Barrios & Huelva, Marta Molina, 2019. "Passive actions in the building envelope to enhance sustainability of schools in a Mediterranean climate," Energy, Elsevier, vol. 167(C), pages 144-158.
    2. Ascione, Fabrizio & Bianco, Nicola & de’ Rossi, Filippo & Turni, Gianluca & Vanoli, Giuseppe Peter, 2013. "Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?," Applied Energy, Elsevier, vol. 104(C), pages 845-859.
    3. Mao, Ning & Pan, Dongmei & Li, Zhao & Xu, Yingjie & Song, Mengjie & Deng, Shiming, 2017. "A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort," Applied Energy, Elsevier, vol. 192(C), pages 213-221.
    4. Stazi, F. & Tomassoni, F. & Vegliò, A. & Di Perna, C., 2011. "Experimental evaluation of ventilated walls with an external clay cladding," Renewable Energy, Elsevier, vol. 36(12), pages 3373-3385.
    5. Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K. & Akiyama, T., 2011. "Development of phase change materials based microencapsulated technology for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1373-1391, February.
    6. Sittisart, Pongphat & Farid, Mohammed M., 2011. "Fire retardants for phase change materials," Applied Energy, Elsevier, vol. 88(9), pages 3140-3145.
    7. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    2. Stella Tsoka & Theodoros Theodosiou & Konstantia Papadopoulou & Katerina Tsikaloudaki, 2020. "Assessing the Energy Performance of Prefabricated Buildings Considering Different Wall Configurations and the Use of PCMs in Greece," Energies, MDPI, vol. 13(19), pages 1-20, September.
    3. Zeyad Amin Al-Absi & Mohd Isa Mohd Hafizal & Mazran Ismail & Azhar Ghazali, 2021. "Towards Sustainable Development: Building’s Retrofitting with PCMs to Enhance the Indoor Thermal Comfort in Tropical Climate, Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    4. Ahmed M. Bolteya & Mohamed A. Elsayad & Ola D. El Monayeri & Adel M. Belal, 2022. "Impact of Phase Change Materials on Cooling Demand of an Educational Facility in Cairo, Egypt," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
    5. Valeria Annibaldi & Federica Cucchiella & Marianna Rotilio, 2020. "A Sustainable Solution for Energy Efficiency in Italian Climatic Contexts," Energies, MDPI, vol. 13(11), pages 1-16, June.
    6. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    7. Su, Yuan & Wang, Linwei & Feng, Wei & Zhou, Nan & Wang, Luyuan, 2021. "Analysis of green building performance in cold coastal climates: An in-depth evaluation of green buildings in Dalian, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Mishan Shrestha & Hom Bahadur Rijal, 2023. "Investigation on Summer Thermal Comfort and Passive Thermal Improvements in Naturally Ventilated Nepalese School Buildings," Energies, MDPI, vol. 16(3), pages 1-33, January.
    9. Małgorzata Basińska & Dobrosława Kaczorek & Halina Koczyk, 2021. "Economic and Energy Analysis of Building Retrofitting Using Internal Insulations," Energies, MDPI, vol. 14(9), pages 1-18, April.
    10. Ahmet Bircan Atmaca & Gülay Zorer Gedik & Andreas Wagner, 2021. "Determination of Optimum Envelope of Religious Buildings in Terms of Thermal Comfort and Energy Consumption: Mosque Cases," Energies, MDPI, vol. 14(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Ren, Miao & Liu, Yushi & Gao, Xiaojian, 2020. "Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings," Energy, Elsevier, vol. 197(C).
    4. Peter Juras & Pavol Durica, 2022. "Measurement of the Green Façade Prototype in a Climate Chamber: Impact of Watering Regime on the Surface Temperatures," Energies, MDPI, vol. 15(7), pages 1-14, March.
    5. Ascione, Fabrizio & Bianco, Nicola & De Masi, Rosa Francesca & de’ Rossi, Filippo & Vanoli, Giuseppe Peter, 2014. "Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season," Applied Energy, Elsevier, vol. 113(C), pages 990-1007.
    6. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    7. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 581-596.
    8. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
    9. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    11. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    12. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    13. Peci López, F. & Ruiz de Adana Santiago, M., 2015. "Sensitivity study of an opaque ventilated façade in the winter season in different climate zones in Spain," Renewable Energy, Elsevier, vol. 75(C), pages 524-533.
    14. Stefan Owczarek & Mariusz Owczarek, 2020. "Heat Transport Analysis in Rectangular Shields Using the Laplace and Poisson Equations," Energies, MDPI, vol. 13(7), pages 1-20, April.
    15. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    16. Mao, Ning & Hao, Jingyu & He, Tianbiao & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2019. "PMV-based dynamic optimization of energy consumption for a residential task/ambient air conditioning system in different climate zones," Renewable Energy, Elsevier, vol. 142(C), pages 41-54.
    17. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    18. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    19. Camila Gregório-Atem & Carolina Aparicio-Fernández & Helena Coch & José-Luis Vivancos, 2020. "Opaque Ventilated Façade (OVF) Thermal Performance Simulation for Office Buildings in Brazil," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    20. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3661-:d:270534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.