IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5026-d418673.html
   My bibliography  Save this article

Assessing the Energy Performance of Prefabricated Buildings Considering Different Wall Configurations and the Use of PCMs in Greece

Author

Listed:
  • Stella Tsoka

    (Department of Civil Engineering, Aristotle University of Thessaloniki, P.O. BOX 429, 54124 Thessaloniki, Greece)

  • Theodoros Theodosiou

    (Department of Civil Engineering, Aristotle University of Thessaloniki, P.O. BOX 429, 54124 Thessaloniki, Greece)

  • Konstantia Papadopoulou

    (Department of Civil Engineering, Aristotle University of Thessaloniki, P.O. BOX 429, 54124 Thessaloniki, Greece)

  • Katerina Tsikaloudaki

    (Department of Civil Engineering, Aristotle University of Thessaloniki, P.O. BOX 429, 54124 Thessaloniki, Greece)

Abstract

Despite the multiple advantages of prefabricated compared to conventional buildings, such as significant reductions in cost and time, improved quality and accuracy in manufacture, easy dismantling and reuse of components, reduction in environmental degradation, increase of productivity gains, etc., they still share a small part of the European building stock, mainly in the Mediterranean. This paper attempts to highlight the potential of prefabricated buildings to achieve advanced levels of performance, particularly as regards their thermal and energy behavior. More specifically, in this paper the energy needs of a single-family building constructed with prefabricated elements is analyzed, considering different climate contexts. The prefabricated elements comprising the building envelope were developed in order to address specific requirements with respect to their structural, hygrothermal, energy, fire, acoustical, and environmental performance, within the research project SUPRIM (sustainable preconstructed innovative module). The new multifunctional building element, also incorporating phase change materials for increased latent thermal heat storage, has been proven to be beneficial in all the examined climate zones. The results of the relevant studies will highlight the contribution of the new prefabricated element to the sustainability of the overall construction, as well as its advantages when compared with conventional constructions.

Suggested Citation

  • Stella Tsoka & Theodoros Theodosiou & Konstantia Papadopoulou & Katerina Tsikaloudaki, 2020. "Assessing the Energy Performance of Prefabricated Buildings Considering Different Wall Configurations and the Use of PCMs in Greece," Energies, MDPI, vol. 13(19), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5026-:d:418673
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    2. Sung Hyup Hong & Jong Man Lee & Jin Woo Moon & Kwang Ho Lee, 2018. "Thermal Comfort, Energy and Cost Impacts of PMV Control Considering Individual Metabolic Rate Variations in Residential Building," Energies, MDPI, vol. 11(7), pages 1-21, July.
    3. Ramos, Greici & Ghisi, Enedir, 2010. "Analysis of daylight calculated using the EnergyPlus programme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1948-1958, September.
    4. Martin Tenpierik & Yvonne Wattez & Michela Turrin & Tudor Cosmatu & Stavroula Tsafou, 2019. "Temperature Control in (Translucent) Phase Change Materials Applied in Facades: A Numerical Study," Energies, MDPI, vol. 12(17), pages 1-16, August.
    5. Anna Zastawna-Rumin & Tomasz Kisilewicz & Umberto Berardi, 2020. "Novel Simulation Algorithm for Modeling the Hysteresis of Phase Change Materials," Energies, MDPI, vol. 13(5), pages 1-15, March.
    6. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    7. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    8. Ascione, Fabrizio & Bianco, Nicola & De Masi, Rosa Francesca & de’ Rossi, Filippo & Vanoli, Giuseppe Peter, 2014. "Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season," Applied Energy, Elsevier, vol. 113(C), pages 990-1007.
    9. Tumminia, Giovanni & Guarino, Francesco & Longo, Sonia & Ferraro, Marco & Cellura, Maurizio & Antonucci, Vincenzo, 2018. "Life cycle energy performances and environmental impacts of a prefabricated building module," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 272-283.
    10. Bruno, Roberto & Bevilacqua, Piero & Cuconati, Teresa & Arcuri, Natale, 2019. "Energy evaluations of an innovative multi-storey wooden near Zero Energy Building designed for Mediterranean areas," Applied Energy, Elsevier, vol. 238(C), pages 929-941.
    11. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Margherita Mastellone & Giuseppe Peter Vanoli, 2019. "Phase Change Materials for Reducing Cooling Energy Demand and Improving Indoor Comfort: A Step-by-Step Retrofit of a Mediterranean Educational Building," Energies, MDPI, vol. 12(19), pages 1-32, September.
    12. Panayiotou, G.P. & Kalogirou, S.A. & Tassou, S.A., 2016. "Evaluation of the application of Phase Change Materials (PCM) on the envelope of a typical dwelling in the Mediterranean region," Renewable Energy, Elsevier, vol. 97(C), pages 24-32.
    13. Shui Yu & Yumeng Cui & Yifei Shao & Fuhong Han, 2019. "Research on the Comprehensive Performance of Hygroscopic Materials in an Office Building Based on EnergyPlus," Energies, MDPI, vol. 12(1), pages 1-17, January.
    14. Xunzhi Yin & Qi Dong & Siyuan Zhou & Jiaqi Yu & Lu Huang & Cheng Sun, 2020. "Energy-Saving Potential of Applying Prefabricated Straw Bale Construction (PSBC) in Domestic Buildings in Northern China," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    2. Zezhou Wu & Lirong Luo & Heng Li & Ying Wang & Guoqiang Bi & Maxwell Fordjour Antwi-Afari, 2021. "An Analysis on Promoting Prefabrication Implementation in Construction Industry towards Sustainability," IJERPH, MDPI, vol. 18(21), pages 1-21, October.
    3. Truong Dang Hoang Nhat Nguyen & Hyosoo Moon & Yonghan Ahn, 2022. "Critical Review of Trends in Modular Integrated Construction Research with a Focus on Sustainability," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    4. Vasiliki Pachta & Vasiliki Giourou, 2022. "Comparative Life Cycle Assessment of a Historic and a Modern School Building, Located in the City of Naoussa, Greece," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
    5. Qianqian Zhao & Junzhen Li & Roman Fediuk & Sergey Klyuev & Darya Nemova, 2021. "Benefit Evaluation Model of Prefabricated Buildings in Seasonally Frozen Regions," Energies, MDPI, vol. 14(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    4. Borderon, Julien & Virgone, Joseph & Cantin, Richard, 2015. "Modeling and simulation of a phase change material system for improving summer comfort in domestic residence," Applied Energy, Elsevier, vol. 140(C), pages 288-296.
    5. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk & Achard, Patrick, 2019. "Energy performance and economic analysis of a TIM-PCM wall under different climates," Energy, Elsevier, vol. 169(C), pages 1274-1291.
    6. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    7. Xu, Bin & Chen, Xing-ni & Fei, Yue & Gan, Wen-tao & Pei, Gang, 2023. "Optimizing the applicability of cool paint through phase change material according to the energy consumption characteristics in different regions," Renewable Energy, Elsevier, vol. 212(C), pages 953-971.
    8. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM energy storage in combination with night ventilation for space cooling," Applied Energy, Elsevier, vol. 158(C), pages 412-421.
    9. Arıcı, Müslüm & Bilgin, Feyza & Krajčík, Michal & Nižetić, Sandro & Karabay, Hasan, 2022. "Energy saving and CO2 reduction potential of external building walls containing two layers of phase change material," Energy, Elsevier, vol. 252(C).
    10. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    11. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    12. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
    13. Saffari, Mohammad & de Gracia, Alvaro & Ushak, Svetlana & Cabeza, Luisa F., 2017. "Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1239-1255.
    14. Larwa, Barbara & Cesari, Silvia & Bottarelli, Michele, 2021. "Study on thermal performance of a PCM enhanced hydronic radiant floor heating system," Energy, Elsevier, vol. 225(C).
    15. Zeyad Amin Al-Absi & Mohd Isa Mohd Hafizal & Mazran Ismail & Azhar Ghazali, 2021. "Towards Sustainable Development: Building’s Retrofitting with PCMs to Enhance the Indoor Thermal Comfort in Tropical Climate, Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    16. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2016. "Stable, low-cost phase change material for building applications: The eutectic mixture of decanoic acid and tetradecanoic acid," Applied Energy, Elsevier, vol. 168(C), pages 457-464.
    17. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    18. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    19. Zhao, Aiqin & An, Jinliang & Yang, Jinglei & Yang, En-Hua, 2018. "Microencapsulated phase change materials with composite titania-polyurea (TiO2-PUA) shell," Applied Energy, Elsevier, vol. 215(C), pages 468-478.
    20. Chen, Xing-ni & Xu, Bin & Fei, Yue & Gan, Wen-tao & Pei, Gang, 2023. "Parameter optimization of phase change material and the combination of phase change material and cool paint according to corresponding energy consumption characteristics under various climates," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5026-:d:418673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.