IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v145y2021ics1364032121003853.html
   My bibliography  Save this article

Ni and Co oxide water oxidation electrocatalysts: Effect of thermal treatment on catalytic activity and surface morphology

Author

Listed:
  • Hasan, Md. Mahedi
  • Islam, Tamanna
  • Ratan, Zubair Ahmed
  • Shaikh, M. Nasiruzzaman
  • Karim, Mohammad Rezaul
  • Rahman, Mohammad Mominur
  • Alharbi, Hamad F.
  • Uddin, Jamal
  • Aziz, Md. Abdul
  • Ahammad, A. J. Saleh

Abstract

Research on renewable energy is flourishing, as it promises to reduce costs and deliver clean energy for the future. Water oxidation (WO) is one of the most promising and fascinating research fields, offering environmentally friendly renewable fuel sources. However, to make this a reality, efficient WO electrocatalysts (WOEs) have to be prepared from readily available and cost-effective sources. The catalytic activity of WOEs is directly related to their structure and synthesis process. Thus, researchers have focused on preparing Ni and Co (Ni/Co) oxide WOEs through various thermal treatment processes (TTPs) owing to their simplicity, cost effectiveness, and ability to tune the physicochemical properties of the WOEs. In this review, the effect of TTPs on the catalytic activity of Ni/Co oxide-based WOEs were carefully evaluated. To do so the effect of TTPs on the structure-activity relationship (SAR), their advantages and limitations, and how these methods can be properly optimized for preparing Ni/Co oxide WOEs has been discussed based on published reports. Also, the electrochemical techniques and parameters that are most commonly utilized in determining the catalytic activity of WOEs has been discussed along with a general mechanism for WO at the Ni/Co oxide electrocatalysts.

Suggested Citation

  • Hasan, Md. Mahedi & Islam, Tamanna & Ratan, Zubair Ahmed & Shaikh, M. Nasiruzzaman & Karim, Mohammad Rezaul & Rahman, Mohammad Mominur & Alharbi, Hamad F. & Uddin, Jamal & Aziz, Md. Abdul & Ahammad, A, 2021. "Ni and Co oxide water oxidation electrocatalysts: Effect of thermal treatment on catalytic activity and surface morphology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:rensus:v:145:y:2021:i:c:s1364032121003853
    DOI: 10.1016/j.rser.2021.111097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121003853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hache, Emmanuel & Palle, Angélique, 2019. "Renewable energy source integration into power networks, research trends and policy implications: A bibliometric and research actors survey analysis," Energy Policy, Elsevier, vol. 124(C), pages 23-35.
    2. Junqing Yan & Lingqiao Kong & Yujin Ji & Jai White & Youyong Li & Jing Zhang & Pengfei An & Shengzhong Liu & Shuit-Tong Lee & Tianyi Ma, 2019. "Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Peter B. Reich & Kerrie M. Sendall & Artur Stefanski & Roy L. Rich & Sarah E. Hobbie & Rebecca A. Montgomery, 2018. "Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture," Nature, Nature, vol. 562(7726), pages 263-267, October.
    4. Dongliang Chao & Changrong Zhu & Peihua Yang & Xinhui Xia & Jilei Liu & Jin Wang & Xiaofeng Fan & Serguei V. Savilov & Jianyi Lin & Hong Jin Fan & Ze Xiang Shen, 2016. "Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    5. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    6. Christopher L. Muhich & Brian D. Ehrhart & Ibraheam Al-Shankiti & Barbara J. Ward & Charles B. Musgrave & Alan W. Weimer, 2016. "A review and perspective of efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 261-287, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    2. Isabel C. Gil-García & Ana Fernández-Guillamón & M. Socorro García-Cascales & Angel Molina-García, 2021. "A Multi-Factorial Review of Repowering Wind Generation Strategies," Energies, MDPI, vol. 14(19), pages 1-25, October.
    3. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    6. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    7. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    8. Aleksei Valentinovich Bogoviz & Svetlana Vladislavlevna Lobova & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2018. "Russia s Energy Security Doctrine: Addressing Emerging Challenges and Opportunities," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 1-6.
    9. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    11. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    12. Rahim Zahedi & Reza Eskandarpanah & Mohammadhossein Akbari & Nima Rezaei & Paniz Mazloumin & Omid Noudeh Farahani, 2022. "Development of a New Simulation Model for the Reservoir Hydropower Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2241-2256, May.
    13. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Ye, Tiange & Zhou, Xiyin, 2022. "Effects of fishery complementary photovoltaic power plant on near-surface meteorology and energy balance," Renewable Energy, Elsevier, vol. 187(C), pages 698-709.
    14. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    15. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    16. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    17. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Hou, Fujun & Sinha, Avik, 2018. "¬¬¬¬¬¬From Nonrenewable to Renewable Energy and Its Impact on Economic Growth: Silver Line of Research & Development Expenditures in APEC Countries," MPRA Paper 90611, University Library of Munich, Germany, revised 10 Dec 2018.
    18. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    19. Gozgor, Giray & Paramati, Sudharshan Reddy, 2022. "Does energy diversification cause an economic slowdown? Evidence from a newly constructed energy diversification index," Energy Economics, Elsevier, vol. 109(C).
    20. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:145:y:2021:i:c:s1364032121003853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.