IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v138y2021ics1364032120308376.html
   My bibliography  Save this article

Iron and steel recycling: Review, conceptual model, irreducible mining requirements, and energy implications

Author

Listed:
  • Harvey, L.D. Danny

Abstract

Production of new steel by recycling steel requires up to 10 times less energy than the production of steel from virgin iron ore (primary steel). In a hypothetical future world with an unchanging, saturated stock of steel, new steel would be needed only to replace steel in products at the end of their lives. However, some primary steel would be needed to make up for less than 100% collection of end-of-life (EOL) steel and for mass losses during the processing of EOL steel, and also to dilute contaminants in melted EOL steel or to bring concentrations of alloy additives to acceptable ranges after mixing of different alloys. This paper reviews the ways in which primary and secondary steel are produced and used today, and reviews the constraints on the recycling of EOL steel today and the prospects for reducing these constraints in the future. A simple conceptual model is presented and applied to the computation of iron ore mining requirements in a hypothetical world where steel stocks are four times larger than today but have reached a steady state. Even with drastic improvement in all the parameters that determine the amount of recycling possible and no further growth in steel stocks, iron ore mining requirements would still be over 10% of present-day mining, thereby undermining long term (1000-yr) sustainability. Energy requirements would be comparable to present-day iron and steel energy use with no improvement in recycling parameters, decreasing by a factor of four for the most extreme case considered.

Suggested Citation

  • Harvey, L.D. Danny, 2021. "Iron and steel recycling: Review, conceptual model, irreducible mining requirements, and energy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120308376
    DOI: 10.1016/j.rser.2020.110553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120308376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eiji Yamasue & Ryota Minamino & Hiroki Tanikawa & Ichiro Daigo & Hideyuki Okumura & Keiichi N. Ishihara & Paul H. Brunner, 2013. "Quality Evaluation of Steel, Aluminum, and Road Material Recycled from End‐of‐Life Urban Buildings in Japan in Terms of Total Material Requirement," Journal of Industrial Ecology, Yale University, vol. 17(4), pages 555-565, August.
    2. Hajime Ohno & Kazuyo Matsubae & Kenichi Nakajima & Shinichiro Nakamura & Tetsuya Nagasaka, 2014. "Unintentional Flow of Alloying Elements in Steel during Recycling of End-of-Life Vehicles," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 242-253, April.
    3. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Ya & Zhang Xintian & Liu Haoxiang, 2021. "Investigating the Impact of Capacity Utilization on Carbon Dioxide Emission: Evidence from China’s Iron and Steel Industry," Journal of Systems Science and Information, De Gruyter, vol. 9(6), pages 681-703, December.
    2. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2021. "Impacts of regional industrial electricity savings on the development of future coal capacity per electricity grid and related air pollution emissions – A case study for China," Applied Energy, Elsevier, vol. 282(PB).
    3. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    4. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    5. Edgar Battand Towa Kouokam & Vanessa Zeller & Wouter Achten, 2019. "Input-output models and waste management analysis: A critical review," ULB Institutional Repository 2013/359535, ULB -- Universite Libre de Bruxelles.
    6. Abel Ortego & Alicia Valero & Antonio Valero & Eliette Restrepo, 2018. "Vehicles and Critical Raw Materials: A Sustainability Assessment Using Thermodynamic Rarity," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1005-1015, October.
    7. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    8. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
    9. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    10. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    11. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    12. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    13. Ohno, Hajime & Matsubae, Kazuyo & Nakajima, Kenichi & Kondo, Yasushi & Nakamura, Shinichiro & Nagasaka, Tetsuya, 2015. "Toward the efficient recycling of alloying elements from end of life vehicle steel scrap," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 11-20.
    14. Jiang, Hong-Dian & Hao, Wen-Ting & Xu, Qing-Yang & Liang, Qiao-Mei, 2020. "Socio-economic and environmental impacts of the iron ore resource tax reform in China: A CGE-based analysis," Resources Policy, Elsevier, vol. 68(C).
    15. Andersson, Magnus & Ljunggren Söderman, Maria & Sandén, Björn A., 2019. "Challenges of recycling multiple scarce metals: The case of Swedish ELV and WEEE recycling," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    16. Gonzalez Hernandez, Ana & Lupton, Richard C. & Williams, Chris & Cullen, Jonathan M., 2018. "Control data, Sankey diagrams, and exergy: Assessing the resource efficiency of industrial plants," Applied Energy, Elsevier, vol. 218(C), pages 232-245.
    17. Hajime Ohno & Kazuyo Matsubae & Kenichi Nakajima & Keisuke Nansai & Yasuhiro Fukushima & Tetsuya Nagasaka, 2016. "Consumption-based accounting of steel alloying elements and greenhouse gas emissions associated with the metal use: the case of Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-17, December.
    18. Chen, Han & Chen, Wenying, 2019. "Potential impacts of coal substitution policy on regional air pollutants and carbon emission reductions for China's building sector during the 13th Five-Year Plan period," Energy Policy, Elsevier, vol. 131(C), pages 281-294.
    19. Li, Yun & Yue, Qiang & He, Junhao & Zhao, Feng & Wang, Heming, 2020. "When will the arrival of China's secondary aluminum era?," Resources Policy, Elsevier, vol. 65(C).
    20. Lopes Silva, Diogo Aparecido & de Oliveira, José Augusto & Saavedra, Yovana M.B. & Ometto, Aldo Roberto & Rieradevall i Pons, Joan & Gabarrell Durany, Xavier, 2015. "Combined MFA and LCA approach to evaluate the metabolism of service polygons: A case study on a university campus," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 157-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120308376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.