IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v137y2021ics1364032120304639.html
   My bibliography  Save this article

A review on solvent systems for furfural production from lignocellulosic biomass

Author

Listed:
  • Lee, Cornelius Basil Tien Loong
  • Wu, Ta Yeong

Abstract

Utilizing biomass in biorefineries is a favorable sustainable method to produce platform chemicals, materials and energy. Conversions of lignocellulosic biomass to chemicals have greatly attracted attention recently due to its abundance in nature and high availability at low costs. The potential of lignocellulosic biomass lies in its ability to be transformed to clean energy, biochemical and industrial products. Furfural has been identified as a valuable platform chemical that can be derived from lignocellulosic biomass. Furfural could also be regarded as sustainable alternatives to petrochemical products. Currently, more than 80 furfural-derived chemicals are used in various industries. The main aim of this review was to discuss various solvent systems that emerged for furfural production from lignocellulosic biomass. Conventionally, furfural is produced by reactions in aqueous systems employing H2SO4 as the catalyst. In an effort to improve furfural production, various solvent systems started to emerge, namely organic solvent system, biphasic system, ionic liquid system, and deep eutectic solvent system. Advantages and limitations of each solvent system were discussed herein. In this review, the background of furfural and its reaction pathways were also discussed. Moreover, opportunities, challenges and limitations to advance furfural production in biorefineries were addressed in this review as well.

Suggested Citation

  • Lee, Cornelius Basil Tien Loong & Wu, Ta Yeong, 2021. "A review on solvent systems for furfural production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120304639
    DOI: 10.1016/j.rser.2020.110172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120304639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Byun, Jaewon & Han, Jeehoon, 2019. "Catalytic conversion of corn stover for 〈gamma〉-valerolactone production by two different solvent strategies: Techno-economic assessment," Energy, Elsevier, vol. 175(C), pages 546-553.
    2. Ho, Mun Chun & Ong, Victor Zhenquan & Wu, Ta Yeong, 2019. "Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 75-86.
    3. Sert, Murat & Arslanoğlu, Alparslan & Ballice, Levent, 2018. "Conversion of sunflower stalk based cellulose to the valuable products using choline chloride based deep eutectic solvents," Renewable Energy, Elsevier, vol. 118(C), pages 993-1000.
    4. Kumar, Dipesh & Singh, Bhaskar & Korstad, John, 2017. "Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 654-671.
    5. Kotarska, Katarzyna & Świerczyńska, Anna & Dziemianowicz, Wojciech, 2015. "Study on the decomposition of lignocellulosic biomass and subjecting it to alcoholic fermentation," Renewable Energy, Elsevier, vol. 75(C), pages 389-394.
    6. Ma, Chunyan & Liu, Chang & Lu, Xiaohua & Ji, Xiaoyan, 2018. "Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading," Applied Energy, Elsevier, vol. 225(C), pages 437-447.
    7. Mohammed, M.A.A. & Salmiaton, A. & Wan Azlina, W.A.K.G. & Mohammad Amran, M.S. & Fakhru'l-Razi, A. & Taufiq-Yap, Y.H., 2011. "Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1258-1270, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Tnah, Shen Khang & Wu, Ta Yeong & Ting, Dennis Chiong Chung & Chow, Han Ket & Shak, Katrina Pui Yee & Subramonian, Wennie & Procentese, Alessandra & Cheng, Chin Kui & Teoh, Wen Hui & Md. Jahim, Jamali, 2022. "Effect of chlorine atoms in choline chloride-monocarboxylic acid for the pretreatment of oil palm fronds and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 182(C), pages 285-295.
    4. Su, Ying & Guo, Bingfeng & Hornung, Ursel & Dahmen, Nicolaus, 2022. "FeCl3-supported solvothermal liquefaction of Miscanthus in methanol," Energy, Elsevier, vol. 258(C).
    5. New, Eng Kein & Wu, Ta Yeong & Tnah, Shen Khang & Procentese, Alessandra & Cheng, Chin Kui, 2023. "Pretreatment and sugar recovery of oil palm fronds using choline chloride:calcium chloride hexahydrate integrated with metal chloride," Energy, Elsevier, vol. 277(C).
    6. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    7. Wiranarongkorn, K. & Im-orb, K. & Patcharavorachot, Y. & Maréchal, F. & Arpornwichanop, A., 2023. "Comparative techno-economic and energy analyses of integrated biorefinery processes of furfural and 5-hydroxymethylfurfural from biomass residue," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    2. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    4. Mohd Faizal, Hasan & Shamsuddin, Hielfarith Suffri & M. Heiree, M. Harif & Muhammad Ariff Hanaffi, Mohd Fuad & Abdul Rahman, Mohd Rosdzimin & Rahman, Md. Mizanur & Latiff, Z.A., 2018. "Torrefaction of densified mesocarp fibre and palm kernel shell," Renewable Energy, Elsevier, vol. 122(C), pages 419-428.
    5. Liu, Yichen & Wang, Yue & Fu, Xing & Li, Qiuxing & Wang, Wenli & Hu, Changwei, 2021. "Effect of MgCl2 solution pretreatment on pubescens conversion at room temperature," Renewable Energy, Elsevier, vol. 171(C), pages 287-298.
    6. Kamil Witaszek & Marcin Herkowiak & Agnieszka A. Pilarska & Wojciech Czekała, 2022. "Methods of Handling the Cup Plant ( Silphium perfoliatum L.) for Energy Production," Energies, MDPI, vol. 15(5), pages 1-20, March.
    7. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    8. Shen, Feng & Li, Ye & Qin, Xiaoya & Guo, Haixin & Li, Jialu & Yang, Jirui & Ding, Yongzhen, 2022. "Selective oxidation of cellulose into formic acid over heteropolyacid-based temperature responsive catalysts," Renewable Energy, Elsevier, vol. 185(C), pages 139-146.
    9. Tong, Wenyao & Chu, Qiulu & Li, Jin & Xie, Xinyu & Wang, Jing & Jin, Yongcan & Wu, Shufang & Hu, Jinguang & Song, Kai, 2022. "Insight into understanding sequential two-stage pretreatment on modifying lignin physiochemical properties and improving holistic utilization of renewable lignocellulose biomass," Renewable Energy, Elsevier, vol. 187(C), pages 123-134.
    10. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.
    11. Wang, Honglin & Ma, Chunyan & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Improving high-pressure water scrubbing through process integration and solvent selection for biogas upgrading," Applied Energy, Elsevier, vol. 276(C).
    12. Tang, Yiwei & Liu, Xiaoning & Xi, Ran & Liu, Le & Qi, Xinhua, 2022. "Catalytic one-pot conversion of biomass-derived furfural to ethyl levulinate over bifunctional Nb/Ni@OMC," Renewable Energy, Elsevier, vol. 200(C), pages 821-831.
    13. Mankar, Akshay R. & Pandey, Ashish & Modak, Arindam & Pant, K.K., 2021. "Microwave mediated enhanced production of 5-hydroxymethylfurfural using choline chloride-based eutectic mixture as sustainable catalyst," Renewable Energy, Elsevier, vol. 177(C), pages 643-651.
    14. Edyta Słupek & Patrycja Makoś & Jacek Gębicki, 2020. "Theoretical and Economic Evaluation of Low-Cost Deep Eutectic Solvents for Effective Biogas Upgrading to Bio-Methane," Energies, MDPI, vol. 13(13), pages 1-19, July.
    15. Feng, Hongqing & Liu, Daojian & Yang, Xiaoxi & An, Ming & Zhang, Weiwen & Zhang, Xiaodong, 2016. "Availability analysis of using iso-octane/n-butanol blends in spark-ignition engines," Renewable Energy, Elsevier, vol. 96(PA), pages 281-294.
    16. He, Zhuosen & Hou, Yucui & Li, He & Wei, Jian & Ren, Shuhang & Wu, Weize, 2023. "Novel chemical looping oxidation of biomass-derived carbohydrates to super-high-yield formic acid using heteropolyacids as oxygen carrier," Renewable Energy, Elsevier, vol. 207(C), pages 461-470.
    17. Li, Wen-Chao & Zhang, Sen-Jia & Xu, Tao & Sun, Mei-Qing & Zhu, Jia-Qing & Zhong, Cheng & Li, Bing-Zhi & Yuan, Ying-Jin, 2020. "Fractionation of corn stover by two-step pretreatment for production of ethanol, furfural, and lignin," Energy, Elsevier, vol. 195(C).
    18. Kyle McGaughy & M. Toufiq Reza, 2020. "Systems Analysis of SO 2 -CO 2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents," Energies, MDPI, vol. 13(2), pages 1-15, January.
    19. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    20. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120304639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.