IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v120y2020ics1364032119308214.html
   My bibliography  Save this article

Minimization of energy demand in slaughterhouses: Estimated production of biogas generated from the effluent

Author

Listed:
  • Vilvert, Amanda Junkes
  • Saldeira Junior, Joaquim Carlos
  • Bautitz, Ivonete Rossi
  • Zenatti, Dilcemara Cristina
  • Andrade, Maurício Guy
  • Hermes, Eliane

Abstract

Many studies have evaluated agroindustrial effluent treatment systems. However, the use of quality control tools in this area is still not widespread, while reports of the use of such tools to monitor slaughterhouse waste treatment systems are practically non-existent. Investigation of exploitation of the energy potential of waste produced within these industries is a strategically important issue, considering the current drive to minimize environmental impacts and to generate power from renewable sources. Therefore, the purpose of this study was to monitor the biological treatment of effluents, using control charts, as well as to estimate the potential production of methane and biogas in a slaughterhouse in southern Brazil. Wastewater samples were collected weekly and measurements were made of ambient and liquid temperatures, pH, solids (total and volatile), chemical oxygen demand (COD), oils and greases (OG), nitrogen, and phosphorus. The potential for methane and biogas production was estimated using the average daily effluent flow rate and the average organic load removal in the anaerobic pond. The effluent treatment system was evaluated by means of the construction of control charts, using the measured variables. This enabled the identification of factors that influenced the effluent treatment process, such as changes in the affluent load, environmental conditions, waste characteristics, and mechanical and human parameters. In terms of energy potential, the use of a covered pond (biodigester) would partially meet the energy demand of the industry, which consumed approximately 66 m3 of firewood per month, hence requiring 42969 m3 of biogas per month to supply all its needs. According to theoretical data, the waste could generate around 6790 m3 of biogas, which would supply 16% of the energy demand, besides providing environmental advantages such as improved efficiency of the treatment system and reduced emissions of greenhouse gases.

Suggested Citation

  • Vilvert, Amanda Junkes & Saldeira Junior, Joaquim Carlos & Bautitz, Ivonete Rossi & Zenatti, Dilcemara Cristina & Andrade, Maurício Guy & Hermes, Eliane, 2020. "Minimization of energy demand in slaughterhouses: Estimated production of biogas generated from the effluent," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  • Handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308214
    DOI: 10.1016/j.rser.2019.109613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119308214
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Yanwen & Linville, Jessica L. & Urgun-Demirtas, Meltem & Mintz, Marianne M. & Snyder, Seth W., 2015. "An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 346-362.
    2. de Almeida, Claudinei & Bariccatti, Reinaldo Aparecido & Frare, Laercio Mantovani & Camargo Nogueira, Carlos Eduardo & Mondardo, Andrei Antônio & Contini, Leonardo & Gomes, Gláucio José & Rovaris, Sol, 2017. "Analysis of the socio-economic feasibility of the implementation of an agro-energy condominium in western Paraná – Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 601-608.
    3. Zhang, Cunsheng & Su, Haijia & Baeyens, Jan & Tan, Tianwei, 2014. "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 383-392.
    4. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    5. Yong, Zihan & Dong, Yulin & Zhang, Xu & Tan, Tianwei, 2015. "Anaerobic co-digestion of food waste and straw for biogas production," Renewable Energy, Elsevier, vol. 78(C), pages 527-530.
    6. Jensen, P.D. & Sullivan, T. & Carney, C. & Batstone, D.J., 2014. "Analysis of the potential to recover energy and nutrient resources from cattle slaughterhouses in Australia by employing anaerobic digestion," Applied Energy, Elsevier, vol. 136(C), pages 23-31.
    7. Bundhoo, Zumar M.A. & Mauthoor, Sumayya & Mohee, Romeela, 2016. "Potential of biogas production from biomass and waste materials in the Small Island Developing State of Mauritius," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1087-1100.
    8. Akbi, Amine & Saber, Meryem & Aziza, Majda & Yassaa, Noureddine, 2017. "An overview of sustainable bioenergy potential in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 240-245.
    9. de Andrade, Maurício Guy & Vilas Boas, Marcio Antonio & Siqueira, Jair Antonio Cruz & Dieter, Jonathan & Sato, Mireille & Hermes, Eliane & Mercante, Erivelto & Kazue Tokura, Luciene, 2017. "Statistical quality control for the evaluation of the uniformity of microsprinkler irrigation with photovoltaic solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 743-753.
    10. Rahman, Khondokar M. & Woodard, Ryan & Manzanares, Elizabeth & Harder, Marie K., 2014. "An assessment of anaerobic digestion capacity in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 762-769.
    11. McCabe, Bernadette K. & Hamawand, Ihsan & Harris, Peter & Baillie, Craig & Yusaf, Talal, 2014. "A case study for biogas generation from covered anaerobic ponds treating abattoir wastewater: Investigation of pond performance and potential biogas production," Applied Energy, Elsevier, vol. 114(C), pages 798-808.
    12. Ware, Aidan & Power, Niamh, 2016. "Biogas from cattle slaughterhouse waste: Energy recovery towards an energy self-sufficient industry in Ireland," Renewable Energy, Elsevier, vol. 97(C), pages 541-549.
    13. Afazeli, Hadi & Jafari, Ali & Rafiee, Shahin & Nosrati, Mohsen, 2014. "An investigation of biogas production potential from livestock and slaughterhouse wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 380-386.
    14. Ferreira, L.R.A. & Otto, R.B. & Silva, F.P. & De Souza, S.N.M. & De Souza, S.S. & Ando Junior, O.H., 2018. "Review of the energy potential of the residual biomass for the distributed generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 440-455.
    15. Rajaeifar, Mohammad Ali & Sadeghzadeh Hemayati, Saeed & Tabatabaei, Meisam & Aghbashlo, Mortaza & Mahmoudi, Seyed Bagher, 2019. "A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 423-442.
    16. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Effect of the Addition of a Fat Emulsifier on the Amount and Quality of the Obtained Biogas," Energies, MDPI, vol. 13(7), pages 1-12, April.
    2. Stolecka, Katarzyna & Rusin, Andrzej, 2021. "Potential hazards posed by biogas plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    3. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    4. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    5. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    6. Ortner, Markus & Wöss, David & Schumergruber, Alexander & Pröll, Tobias & Fuchs, Werner, 2015. "Energy self-supply of large abattoir by sustainable waste utilization based on anaerobic mono-digestion," Applied Energy, Elsevier, vol. 143(C), pages 460-471.
    7. Salah Jellali & Yassine Charabi & Muhammad Usman & Abdullah Al-Badi & Mejdi Jeguirim, 2021. "Investigations on Biogas Recovery from Anaerobic Digestion of Raw Sludge and Its Mixture with Agri-Food Wastes: Application to the Largest Industrial Estate in Oman," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    8. Zareei, Samira, 2018. "Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran," Renewable Energy, Elsevier, vol. 118(C), pages 351-356.
    9. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    10. Islam, KM Nazmul & Sarker, Tapan & Taghizadeh-Hesary, Farhad & Atri, Anashuwa Chowdhury & Alam, Mohammad Shafiul, 2021. "Renewable energy generation from livestock waste for a sustainable circular economy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Hamawand, Ihsan, 2015. "Anaerobic digestion process and bio-energy in meat industry: A review and a potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 37-51.
    12. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Poblete, Israel Bernardo S. & Araujo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2020. "Dynamic analysis of sustainable biogas-combined-cycle plant: Time-varying demand and bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Patience Afi Seglah & Yajing Wang & Hongyan Wang & Chunyu Gao & Yuyun Bi, 2022. "Sustainable Biofuel Production from Animal Manure and Crop Residues in Ghana," Energies, MDPI, vol. 15(16), pages 1-17, August.
    15. Derseh Yilie Limeneh & Tamrat Tesfaye & Million Ayele & Nuredin Muhammed Husien & Eyasu Ferede & Adane Haile & Wassie Mengie & Amare Abuhay & Gemeda Gebino Gelebo & Magdi Gibril & Fangong Kong, 2022. "A Comprehensive Review on Utilization of Slaughterhouse By-Product: Current Status and Prospect," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
    16. Şenol, Halil & Ali Dereli̇, Mehmet & Özbilgin, Ferdi, 2021. "Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Bipasyana Dhungana & Sunil Prasad Lohani & Michael Marsolek, 2022. "Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    18. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    19. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies," Energies, MDPI, vol. 14(16), pages 1-43, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.