IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v113y2019ic21.html
   My bibliography  Save this article

Identifying the feasibility of establishing a passive house school in central Europe: An energy performance and carbon emissions monitoring study in Germany

Author

Listed:
  • Wang, Yang
  • Du, Jiangtao
  • Kuckelkorn, Jens M.
  • Kirschbaum, Alexander
  • Gu, Xin
  • Li, Daoliang

Abstract

The development of the Passive House (PH) Standard has provided an important opportunity to minimize the energy consumption of buildings in accordance with global targets for climate change and energy savings. This article presents a 3-year monitoring study (operation and optimization) of energy performance and CO2 emissions in a newly built Passive House school building in southern Germany. Monthly, annual and specific energy demands (including heating, cooling and electricity) were analyzed and evaluated using three energy-benchmarking systems: EnEV, LEE and PHPP. Sorted load duration profiles for heating and electricity from 2012 to 2014 have also been presented and assessed. In addition, the CO2 equivalent emission resulting from the total energy consumption of the building was calculated. The results illustrate that the newly built Passive House school building could meet the requirements of the three energy-benchmarking systems and would reduce the total annual CO2 emissions of a standard school building in Germany by up to two-thirds.

Suggested Citation

  • Wang, Yang & Du, Jiangtao & Kuckelkorn, Jens M. & Kirschbaum, Alexander & Gu, Xin & Li, Daoliang, 2019. "Identifying the feasibility of establishing a passive house school in central Europe: An energy performance and carbon emissions monitoring study in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
  • Handle: RePEc:eee:rensus:v:113:y:2019:i:c:21
    DOI: 10.1016/j.rser.2019.109256
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119304563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    2. Wang, Yang & Zhao, Fu-Yun & Kuckelkorn, Jens & Liu, Di & Liu, Li-Qun & Pan, Xiao-Chuan, 2014. "Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit," Energy, Elsevier, vol. 64(C), pages 991-1001.
    3. Wang, Yang & Zhao, Fu-Yun & Kuckelkorn, Jens & Spliethoff, Hartmut & Rank, Ernst, 2014. "School building energy performance and classroom air environment implemented with the heat recovery heat pump and displacement ventilation system," Applied Energy, Elsevier, vol. 114(C), pages 58-68.
    4. Audenaert, A. & De Cleyn, S.H. & Vankerckhove, B., 2008. "Economic analysis of passive houses and low-energy houses compared with standard houses," Energy Policy, Elsevier, vol. 36(1), pages 47-55, January.
    5. Schnieders, Jurgen & Hermelink, Andreas, 2006. "CEPHEUS results: measurements and occupants' satisfaction provide evidence for Passive Houses being an option for sustainable building," Energy Policy, Elsevier, vol. 34(2), pages 151-171, January.
    6. Wang, Yang & Kuckelkorn, Jens & Zhao, Fu-Yun & Spliethoff, Hartmut & Lang, Werner, 2017. "A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1303-1319.
    7. Shan, M. & Yu, T. & Yang, X., 2016. "Assessment of an integrated active solar and air-source heat pump water heating system operated within a passive house in a cold climate zone," Renewable Energy, Elsevier, vol. 87(P3), pages 1059-1066.
    8. Raatikainen, Mika & Skön, Jukka-Pekka & Leiviskä, Kauko & Kolehmainen, Mikko, 2016. "Intelligent analysis of energy consumption in school buildings," Applied Energy, Elsevier, vol. 165(C), pages 416-429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing Li & Qinli Deng & Zhigang Ren & Xiaofang Shan & Guang Yang, 2021. "Parametric Study on Residential Passive House Building in Different Chinese Climate Zones," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    2. Bader Alshuraiaan, 2021. "Renewable Energy Technologies for Energy Efficient Buildings: The Case of Kuwait," Energies, MDPI, vol. 14(15), pages 1-16, July.
    3. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    4. Fang Wang & Wen-Jia Yang & Wei-Feng Sun, 2020. "Heat Transfer and Energy Consumption of Passive House in a Severely Cold Area: Simulation Analyses," Energies, MDPI, vol. 13(3), pages 1-19, February.
    5. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Jitka Mohelníková & Miloslav Novotný & Pavla Mocová, 2020. "Evaluation of School Building Energy Performance and Classroom Indoor Environment," Energies, MDPI, vol. 13(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yang & Kuckelkorn, Jens & Zhao, Fu-Yun & Spliethoff, Hartmut & Lang, Werner, 2017. "A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1303-1319.
    2. Michele Zinzi & Francesca Pagliaro & Stefano Agnoli & Fabio Bisegna & Domenico Iatauro, 2021. "On the Built-Environment Quality in Nearly Zero-Energy Renovated Schools: Assessment and Impact of Passive Strategies," Energies, MDPI, vol. 14(10), pages 1-18, May.
    3. Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
    4. Aydin, Yusuf Cihat & Mirzaei, Parham A. & Akhavannasab, Sanam, 2019. "On the relationship between building energy efficiency, aesthetic features and marketability: Toward a novel policy for energy demand reduction," Energy Policy, Elsevier, vol. 128(C), pages 593-606.
    5. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    6. Georges, L. & Massart, C. & Van Moeseke, G. & De Herde, A., 2012. "Environmental and economic performance of heating systems for energy-efficient dwellings: Case of passive and low-energy single-family houses," Energy Policy, Elsevier, vol. 40(C), pages 452-464.
    7. Soršak, Marko & Leskovar, Vesna Žegarac & Premrov, Miroslav & Goričanec, Darko & Pšunder, Igor, 2014. "Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia," Energy, Elsevier, vol. 77(C), pages 57-65.
    8. Feng, Tong & Lin, Zhongguo & Du, Huibin & Qiu, Yueming & Zuo, Jian, 2021. "Does low-carbon pilot city program reduce carbon intensity? Evidence from Chinese cities," Research in International Business and Finance, Elsevier, vol. 58(C).
    9. Alejandro Moreno-Rangel & Tim Sharpe & Gráinne McGill & Filbert Musau, 2020. "Indoor Air Quality in Passivhaus Dwellings: A Literature Review," IJERPH, MDPI, vol. 17(13), pages 1-16, July.
    10. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    11. Timmons, David & Konstantinidis, Charalampos & Shapiro, Andrew M. & Wilson, Alex, 2016. "Decarbonizing residential building energy: A cost-effective approach," Energy Policy, Elsevier, vol. 92(C), pages 382-392.
    12. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    13. Adrian Pitts, 2017. "Passive House and Low Energy Buildings: Barriers and Opportunities for Future Development within UK Practice," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    14. Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Piotr Gradziuk, 2020. "Renewable Energy Utilization in Rural Residential Housing: Economic and Environmental Facets," Energies, MDPI, vol. 13(24), pages 1-18, December.
    15. Wadud, Zia & Royston, Sarah & Selby, Jan, 2019. "Modelling energy demand from higher education institutions: A case study of the UK," Applied Energy, Elsevier, vol. 233, pages 816-826.
    16. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    17. Saari, Arto & Kalamees, Targo & Jokisalo, Juha & Michelsson, Rasmus & Alanne, Kari & Kurnitski, Jarek, 2012. "Financial viability of energy-efficiency measures in a new detached house design in Finland," Applied Energy, Elsevier, vol. 92(C), pages 76-83.
    18. Wang, Yang & Shukla, Ashish & Liu, Shuli, 2017. "A state of art review on methodologies for heat transfer and energy flow characteristics of the active building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1102-1116.
    19. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    20. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:113:y:2019:i:c:21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.