IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v113y2019ic10.html
   My bibliography  Save this article

A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential

Author

Listed:
  • Niebuhr, C.M.
  • van Dijk, M.
  • Neary, V.S.
  • Bhagwan, J.N.

Abstract

The hydrokinetic industry has advanced beyond its initial testing phase with full-scale projects being introduced, constructed and tested globally. However primary hurdles such as reducing the cost of these systems, optimizing individual systems and arrays and balancing energy extraction with environmental impact still requires attention prior to achieving commercial success. The present study addresses the advances and limitations of near-zero head hydrokinetic technologies and the possibility of increased potential and applicability when enhancement techniques within the design, implementation and operational phases are considered. Its goal is threefold: to review small-scale state-of-the-art near-zero hydrokinetic-current-energy-conversion-technologies, to assess barriers including gaps in knowledge, information and data as well as assess time and resource limitations of water-infrastructure owners and operators. A case study summarizes the design and implementation of the first permanent modern hydrokinetic installation in South Africa where improved outputs were achieved through optimization during each design and operation phase. An economic analysis validates a competitive levelized cost of energy and further emphasizes the broad potential that is relatively unexplored within existing water-infrastructure.

Suggested Citation

  • Niebuhr, C.M. & van Dijk, M. & Neary, V.S. & Bhagwan, J.N., 2019. "A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
  • Handle: RePEc:eee:rensus:v:113:y:2019:i:c:10
    DOI: 10.1016/j.rser.2019.06.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211930440X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.06.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kusakana, Kanzumba & Vermaak, Herman Jacobus, 2013. "Hydrokinetic power generation for rural electricity supply: Case of South Africa," Renewable Energy, Elsevier, vol. 55(C), pages 467-473.
    2. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    3. Chawdhary, Saurabh & Hill, Craig & Yang, Xiaolei & Guala, Michele & Corren, Dean & Colby, Jonathan & Sotiropoulos, Fotis, 2017. "Wake characteristics of a TriFrame of axial-flow hydrokinetic turbines," Renewable Energy, Elsevier, vol. 109(C), pages 332-345.
    4. Pyakurel, Parakram & VanZwieten, James H. & Sultan, Cornel & Dhanak, Manhar & Xiros, Nikolaos I., 2017. "Numerical simulation and dynamical response of a moored hydrokinetic turbine operating in the wake of an upstream turbine for control design," Renewable Energy, Elsevier, vol. 114(PB), pages 1134-1145.
    5. Neary, Vincent S. & Gunawan, Budi & Hill, Craig & Chamorro, Leonardo P., 2013. "Near and far field flow disturbances induced by model hydrokinetic turbine: ADV and ADP comparison," Renewable Energy, Elsevier, vol. 60(C), pages 1-6.
    6. Balkhair, Khaled S. & Rahman, Khalil Ur, 2017. "Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale," Applied Energy, Elsevier, vol. 188(C), pages 378-391.
    7. Kucukali, Serhat, 2010. "Hydropower potential of municipal water supply dams in Turkey: A case study in Ulutan Dam," Energy Policy, Elsevier, vol. 38(11), pages 6534-6539, November.
    8. Kirke, B.K., 2011. "Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3013-3022.
    9. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
    10. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    11. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    12. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    13. Loots, I. & van Dijk, M. & Barta, B. & van Vuuren, S.J. & Bhagwan, J.N., 2015. "A review of low head hydropower technologies and applications in a South African context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1254-1268.
    14. Ponta, Fernando & Shankar Dutt, Gautam, 2000. "An improved vertical-axis water-current turbine incorporating a channelling device," Renewable Energy, Elsevier, vol. 20(2), pages 223-241.
    15. Gaden, David L.F. & Bibeau, Eric L., 2010. "A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model," Renewable Energy, Elsevier, vol. 35(6), pages 1152-1158.
    16. González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2016. "Optimisation of hydrokinetic turbine array layouts via surrogate modelling," Renewable Energy, Elsevier, vol. 93(C), pages 45-57.
    17. Güney, M.S. & Kaygusuz, K., 2010. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2996-3004, December.
    18. Bet, F & Grassmann, H, 2003. "Upgrading conventional wind turbines," Renewable Energy, Elsevier, vol. 28(1), pages 71-78.
    19. Bilgili, Mehmet & Bilirgen, Harun & Ozbek, Arif & Ekinci, Firat & Demirdelen, Tugce, 2018. "The role of hydropower installations for sustainable energy development in Turkey and the world," Renewable Energy, Elsevier, vol. 126(C), pages 755-764.
    20. Nunes, Matheus M. & Mendes, Rafael C.F. & Oliveira, Taygoara F. & Brasil Junior, Antonio C.P., 2019. "An experimental study on the diffuser-enhanced propeller hydrokinetic turbines," Renewable Energy, Elsevier, vol. 133(C), pages 840-848.
    21. Riglin, Jacob & Daskiran, Cosan & Jonas, Joseph & Schleicher, W. Chris & Oztekin, Alparslan, 2016. "Hydrokinetic turbine array characteristics for river applications and spatially restricted flows," Renewable Energy, Elsevier, vol. 97(C), pages 274-283.
    22. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    23. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baruah, Abhinandan & Basu, Mousumi & Amuley, Deeshank, 2021. "Modeling of an autonomous hybrid renewable energy system for electrification of a township: A case study for Sikkim, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Willis Awandu & Robin Ruff & Jens-Uwe Wiesemann & Boris Lehmann, 2022. "Status of Micro-Hydrokinetic River Technology Turbines Application for Rural Electrification in Africa," Energies, MDPI, vol. 15(23), pages 1-13, November.
    3. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    4. MacMillan, Andrew & Schell, Kristen R. & Roughley, Colter, 2023. "A predictive model of velocity for local hydrokinetic power assessment based on remote sensing data," Renewable Energy, Elsevier, vol. 211(C), pages 285-295.
    5. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    6. Niebuhr, C.M. & Schmidt, S. & van Dijk, M. & Smith, L. & Neary, V.S., 2022. "A review of commercial numerical modelling approaches for axial hydrokinetic turbine wake analysis in channel flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Shamsuddeen, Mohamed Murshid & Ma, Sang-Bum & Park, No-Hyun & Kim, Kyung Min & Kim, Jin-Hyuk, 2023. "Design analysis and optimization of a hydraulic gate turbine for power production from ultra-low head sites," Energy, Elsevier, vol. 275(C).
    8. Neary, Vincent S. & Ahn, Seongho, 2023. "Global atlas of extreme significant wave heights and relative risk ratios," Renewable Energy, Elsevier, vol. 208(C), pages 130-140.
    9. Usmani, Sabah & Siddiqi, Afreen & Wescoat, James L., 2021. "Energy generation in the canal irrigation network in India: Integrated spatial planning framework on the Upper Ganga Canal corridor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Jonathan Aguilar & Ainhoa Rubio-Clemente & Laura Velasquez & Edwin Chica, 2019. "Design and Optimization of a Multi-Element Hydrofoil for a Horizontal-Axis Hydrokinetic Turbine," Energies, MDPI, vol. 12(24), pages 1-18, December.
    11. Puertas-Frías, Carmen M. & Willson, Clinton S. & García-Salaberri, Pablo A., 2022. "Design and economic analysis of a hydrokinetic turbine for household applications," Renewable Energy, Elsevier, vol. 199(C), pages 587-598.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    2. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    3. Musa, Mirko & Hill, Craig & Guala, Michele, 2019. "Interaction between hydrokinetic turbine wakes and sediment dynamics: array performance and geomorphic effects under different siting strategies and sediment transport conditions," Renewable Energy, Elsevier, vol. 138(C), pages 738-753.
    4. Faruk Guner & Hilmi Zenk, 2020. "Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades," Energies, MDPI, vol. 13(3), pages 1-15, February.
    5. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    6. Montoya Ramírez, Rubén D. & Cuervo, Felipe Isaza & Monsalve Rico, César Antonio, 2016. "Technical and financial valuation of hydrokinetic power in the discharge channels of large hydropower plants in Colombia: A case study," Renewable Energy, Elsevier, vol. 99(C), pages 136-147.
    7. Kumar, Dinesh & Sarkar, Shibayan, 2016. "Numerical investigation of hydraulic load and stress induced in Savonius hydrokinetic turbine with the effects of augmentation techniques through fluid-structure interaction analysis," Energy, Elsevier, vol. 116(P1), pages 609-618.
    8. Fontaine, A.A. & Straka, W.A. & Meyer, R.S. & Jonson, M.L. & Young, S.D. & Neary, V.S., 2020. "Performance and wake flow characterization of a 1:8.7-scale reference USDOE MHKF1 hydrokinetic turbine to establish a verification and validation test database," Renewable Energy, Elsevier, vol. 159(C), pages 451-467.
    9. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    10. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    11. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    12. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    13. Nunes, Matheus M. & Mendes, Rafael C.F. & Oliveira, Taygoara F. & Brasil Junior, Antonio C.P., 2019. "An experimental study on the diffuser-enhanced propeller hydrokinetic turbines," Renewable Energy, Elsevier, vol. 133(C), pages 840-848.
    14. Santos, Ivan Felipe Silva dos & Camacho, Ramiro Gustavo Ramirez & Tiago Filho, Geraldo Lúcio & Botan, Antonio Carlos Barkett & Vinent, Barbara Amoeiro, 2019. "Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: An approach using numerical predictions (CFD) and experimental data," Renewable Energy, Elsevier, vol. 143(C), pages 648-662.
    15. Craig Hill & Vincent S. Neary & Michele Guala & Fotis Sotiropoulos, 2020. "Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter," Energies, MDPI, vol. 13(19), pages 1-21, October.
    16. Zdankus, Narimantas & Punys, Petras & Zdankus, Tadas, 2014. "Conversion of lowland river flow kinetic energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 121-130.
    17. Behrouzi, Fatemeh & Nakisa, Mehdi & Maimun, Adi & Ahmed, Yasser M., 2016. "Global renewable energy and its potential in Malaysia: A review of Hydrokinetic turbine technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1270-1281.
    18. Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
    19. Talukdar, Parag K. & Kulkarni, Vinayak & Saha, Ujjwal K., 2018. "Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation," Renewable Energy, Elsevier, vol. 127(C), pages 158-167.
    20. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:113:y:2019:i:c:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.