IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125002964.html
   My bibliography  Save this article

Application of hydrokinetic turbines in microtidal rivers: The Misa River test site

Author

Listed:
  • Postacchini, Matteo
  • Zitti, Gianluca
  • Perugini, Eleonora
  • Rossetti, Riccardo
  • Brocchini, Maurizio

Abstract

The present study focuses on the potential application of Archimedes screw turbines in microtidal rivers. The Misa River, a 48-km long Italian course flowing into the Adriatic Sea, is taken as the reference test. Since hydrokinetic turbines operate with low discharges and require little engineering facilities, an Archimedes turbine was recently tested both in laboratory and numerically, showing performance coefficients up to 23.8%. To investigate its functioning within the Misa River, observed river stages are statistically analyzed and then used at the upstream boundary of a hydraulic model. The flow results are analyzed to evaluate the potential energy production of turbine configurations built upon a range of: (i) potential installation zones along the river, (ii) turbine radii, (iii) streamwise inclinations of the turbine axis. The energetic analysis of each configuration is performed accounting for one or more turbines installed along selected river cross-sections. A direct dependence is found between generated power and turbine size, especially for the inclined configurations. The optimal size and number of devices to be deployed at specific cross-sections are identified. The total annual energy for the best configurations is around 1MWh, which may find application to supply energy to community buildings, like schools or kindergartens.

Suggested Citation

  • Postacchini, Matteo & Zitti, Gianluca & Perugini, Eleonora & Rossetti, Riccardo & Brocchini, Maurizio, 2025. "Application of hydrokinetic turbines in microtidal rivers: The Misa River test site," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125002964
    DOI: 10.1016/j.renene.2025.122634
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Postacchini, Matteo & Di Giuseppe, Elisa & Eusebi, Anna Laura & Pelagalli, Leonardo & Darvini, Giovanna & Cipolletta, Giulia & Fatone, Francesco, 2022. "Energy saving from small-sized urban contexts: Integrated application into the domestic water cycle," Renewable Energy, Elsevier, vol. 199(C), pages 1300-1317.
    2. Kusakana, Kanzumba & Vermaak, Herman Jacobus, 2013. "Hydrokinetic power generation for rural electricity supply: Case of South Africa," Renewable Energy, Elsevier, vol. 55(C), pages 467-473.
    3. Riglin, Jacob & Carter, Fred & Oblas, Nick & Schleicher, W. Chris & Daskiran, Cosan & Oztekin, Alparslan, 2016. "Experimental and numerical characterization of a full-scale portable hydrokinetic turbine prototype for river applications," Renewable Energy, Elsevier, vol. 99(C), pages 772-783.
    4. Brown, Erik & Sulaeman, Samer & Quispe-Abad, Raul & Müller, Norbert & Moran, Emilio, 2023. "Safe passage for fish: The case for in-stream turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Ramírez-Mendoza, R. & Amoudry, L.O. & Thorne, P.D. & Cooke, R.D. & McLelland, S.J. & Jordan, L.B. & Simmons, S.M. & Parsons, D.R. & Murdoch, L., 2018. "Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics," Renewable Energy, Elsevier, vol. 129(PA), pages 271-284.
    6. Niebuhr, C.M. & van Dijk, M. & Neary, V.S. & Bhagwan, J.N., 2019. "A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
    8. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    9. Dellinger, Guilhem & Garambois, Pierre-André & Dellinger, Nicolas & Dufresne, Matthieu & Terfous, Abdelali & Vazquez, Jose & Ghenaim, Abdellah, 2018. "Computational fluid dynamics modeling for the design of Archimedes Screw Generator," Renewable Energy, Elsevier, vol. 118(C), pages 847-857.
    10. Antonino D’Amico & Domenico Panno & Giuseppina Ciulla & Antonio Messineo, 2020. "Multi-Energy School System for Seasonal Use in the Mediterranean Area," Sustainability, MDPI, vol. 12(20), pages 1-27, October.
    11. Güney, M.S. & Kaygusuz, K., 2010. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2996-3004, December.
    12. Willis Awandu & Robin Ruff & Jens-Uwe Wiesemann & Boris Lehmann, 2022. "Status of Micro-Hydrokinetic River Technology Turbines Application for Rural Electrification in Africa," Energies, MDPI, vol. 15(23), pages 1-13, November.
    13. Nunes, Matheus M. & Mendes, Rafael C.F. & Oliveira, Taygoara F. & Brasil Junior, Antonio C.P., 2019. "An experimental study on the diffuser-enhanced propeller hydrokinetic turbines," Renewable Energy, Elsevier, vol. 133(C), pages 840-848.
    14. Bouvant, Maël & Betancour, Johan & Velásquez, Laura & Rubio-Clemente, Ainhoa & Chica, Edwin, 2021. "Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology," Renewable Energy, Elsevier, vol. 172(C), pages 941-954.
    15. Tianming Zhang & Wei Haur Lam & Yonggang Cui & Jinxin Jiang & Chong Sun & Jianhua Guo & Yanbo Ma & Shuguang Wang & Su Shiung Lam & Gerard Hamill, 2019. "Tip-Bed Velocity and Scour Depth of Horizontal-Axis Tidal Turbine with Consideration of Tip Clearance," Energies, MDPI, vol. 12(12), pages 1-24, June.
    16. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niebuhr, C.M. & van Dijk, M. & Neary, V.S. & Bhagwan, J.N., 2019. "A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Faruk Guner & Hilmi Zenk, 2020. "Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades," Energies, MDPI, vol. 13(3), pages 1-15, February.
    3. Montoya Ramírez, Rubén D. & Cuervo, Felipe Isaza & Monsalve Rico, César Antonio, 2016. "Technical and financial valuation of hydrokinetic power in the discharge channels of large hydropower plants in Colombia: A case study," Renewable Energy, Elsevier, vol. 99(C), pages 136-147.
    4. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    5. Dylan Sheneth Edirisinghe & Ho-Seong Yang & Min-Sung Kim & Byung-Ha Kim & Sudath Prasanna Gunawardane & Young-Ho Lee, 2021. "Computational Flow Analysis on a Real Scale Run-of-River Archimedes Screw Turbine with a High Incline Angle," Energies, MDPI, vol. 14(11), pages 1-18, June.
    6. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    7. Kusakana, Kanzumba, 2014. "Techno-economic analysis of off-grid hydrokinetic-based hybrid energy systems for onshore/remote area in South Africa," Energy, Elsevier, vol. 68(C), pages 947-957.
    8. Khani, Mohammad Sadegh & Shahsavani, Younes & Mehraein, Mojtaba & Soleimani Rad, Mohammad Hossein & Nikbakhsh, Amir Abbas, 2024. "Evaluation of the performance of the Savonius hydrokinetic turbines in the straight and curved channels using advanced machine learning methods," Energy, Elsevier, vol. 290(C).
    9. Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
    10. Jonathan Aguilar & Ainhoa Rubio-Clemente & Laura Velasquez & Edwin Chica, 2019. "Design and Optimization of a Multi-Element Hydrofoil for a Horizontal-Axis Hydrokinetic Turbine," Energies, MDPI, vol. 12(24), pages 1-18, December.
    11. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    12. Deng, Xu & Zhang, Jisheng & Lin, Xiangfeng, 2024. "Proposal of actuator line-immersed boundary coupling model for tidal stream turbine modeling with hydrodynamics upon scouring morphology," Energy, Elsevier, vol. 292(C).
    13. John, Bony & Varghese, James, 2021. "Sizing and techno-economic analysis of hydrokinetic turbine based standalone hybrid energy systems," Energy, Elsevier, vol. 221(C).
    14. Yah, Nor F. & Oumer, Ahmed N. & Idris, Mat S., 2017. "Small scale hydro-power as a source of renewable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 228-239.
    15. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    16. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    17. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    18. d’Auteuil, Samuel & Birjandi, Amir & Bibeau, Eric & Jordan, Scott & Soviak, Jody & Friesen, David, 2019. "Riverine hydrokinetic resource assessment using low cost winter imagery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 293-300.
    19. Mendes, Rafael C.F. & Chapui, Benoit & Oliveira, Taygoara F. & Noguera, Ricardo & Brasil, Antonio C.P., 2024. "Flow through horizontal axis propeller turbines in a triangular array," Renewable Energy, Elsevier, vol. 220(C).
    20. Bouvant, Maël & Betancour, Johan & Velásquez, Laura & Rubio-Clemente, Ainhoa & Chica, Edwin, 2021. "Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology," Renewable Energy, Elsevier, vol. 172(C), pages 941-954.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125002964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.