IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp941-954.html
   My bibliography  Save this article

Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology

Author

Listed:
  • Bouvant, Maël
  • Betancour, Johan
  • Velásquez, Laura
  • Rubio-Clemente, Ainhoa
  • Chica, Edwin

Abstract

In this study, the performance of an Archimedes screw turbine (AST), in terms of the power coefficient (CP), was evaluated. The design parameters, including the inner and the outer diameter (Di and Do, respectively), the axle length (L), the blade inclination with respect to the longitudinal axis of the screw (α) and the blade stride (p), were selected as the studied factors to be optimized by using the response surface methodology and particularly a central composite design of experiments (CCD) to maximize the CP value. Computational fluid dynamics simulations were conducted to investigate the interaction among the referred parameters on the turbine performance. In the numerical simulation, six degrees of freedom (6-DoF) user defined function (UDF) method was used. Furthermore, the results obtained for the initial and the optimized turbine configurations were compared based on the experimental data available in the literature. The numerical results showed a good agreement with the reported experimental data. The highest CP values obtained under optimal design conditions; i.e., at aDi/Do, L, α and a p equal to 0.1, 360 mm, 73.94∘ and 220 mm, respectively, were 0.5515 (CFD result) and 0.5137 (predicted value derived from the validated reduced second-order regression model).

Suggested Citation

  • Bouvant, Maël & Betancour, Johan & Velásquez, Laura & Rubio-Clemente, Ainhoa & Chica, Edwin, 2021. "Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology," Renewable Energy, Elsevier, vol. 172(C), pages 941-954.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:941-954
    DOI: 10.1016/j.renene.2021.03.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121004328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kozyn, Andrew & Lubitz, William David, 2017. "A power loss model for Archimedes screw generators," Renewable Energy, Elsevier, vol. 108(C), pages 260-273.
    2. Gaiser, Kyle & Erickson, Paul & Stroeve, Pieter & Delplanque, Jean-Pierre, 2016. "An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology," Renewable Energy, Elsevier, vol. 85(C), pages 406-418.
    3. Shahverdi, K. & Loni, R. & Ghobadian, B. & Gohari, S. & Marofi, S. & Bellos, Evangelos, 2020. "Numerical Optimization Study of Archimedes Screw Turbine (AST): A case study," Renewable Energy, Elsevier, vol. 145(C), pages 2130-2143.
    4. Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
    5. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    6. Dellinger, Guilhem & Garambois, Pierre-André & Dellinger, Nicolas & Dufresne, Matthieu & Terfous, Abdelali & Vazquez, Jose & Ghenaim, Abdellah, 2018. "Computational fluid dynamics modeling for the design of Archimedes Screw Generator," Renewable Energy, Elsevier, vol. 118(C), pages 847-857.
    7. Waters, Shaun & Aggidis, George A., 2015. "Over 2000 years in review: Revival of the Archimedes Screw from Pump to Turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 497-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dylan Sheneth Edirisinghe & Ho-Seong Yang & Min-Sung Kim & Byung-Ha Kim & Sudath Prasanna Gunawardane & Young-Ho Lee, 2021. "Computational Flow Analysis on a Real Scale Run-of-River Archimedes Screw Turbine with a High Incline Angle," Energies, MDPI, vol. 14(11), pages 1-18, June.
    2. Mahdavi, Navid & Mojaver, Parisa & Khalilarya, Shahram, 2022. "Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method," Renewable Energy, Elsevier, vol. 185(C), pages 506-524.
    3. Velásquez, Laura & Posada, Alejandro & Chica, Edwin, 2022. "Optimization of the basin and inlet channel of a gravitational water vortex hydraulic turbine using the response surface methodology," Renewable Energy, Elsevier, vol. 187(C), pages 508-521.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2019. "Influence of equipment size and installation height on electricity production in an Archimedes screw-based ultra-low head small hydropower plant and its economic feasibility," Renewable Energy, Elsevier, vol. 142(C), pages 468-477.
    2. Dellinger, Guilhem & Simmons, Scott & Lubitz, William David & Garambois, Pierre-André & Dellinger, Nicolas, 2019. "Effect of slope and number of blades on Archimedes screw generator power output," Renewable Energy, Elsevier, vol. 136(C), pages 896-908.
    3. Erinofiardi Erinofiardi & Ravi Koirala & Nirajan Shiwakoti & Abhijit Date, 2022. "Sustainable Power Generation Using Archimedean Screw Turbine: Influence of Blade Number on Flow and Performance," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    4. Quaranta, Emanuele & Revelli, Roberto, 2018. "Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies and modern optimizations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 414-427.
    5. Dylan Sheneth Edirisinghe & Ho-Seong Yang & Min-Sung Kim & Byung-Ha Kim & Sudath Prasanna Gunawardane & Young-Ho Lee, 2021. "Computational Flow Analysis on a Real Scale Run-of-River Archimedes Screw Turbine with a High Incline Angle," Energies, MDPI, vol. 14(11), pages 1-18, June.
    6. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2018. "Simulation of electrical energy production in Archimedes screw-based ultra-low head small hydropower plant considering environment protection conditions and technical limitations," Energy, Elsevier, vol. 164(C), pages 87-98.
    7. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Pudukudy, Manoj & Hasan, Hassimi Abu & Mohamed, Azah & Hamid, Aidil Abdul, 2018. "Pico hydropower (PHP) development in Malaysia: Potential, present status, barriers and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2796-2805.
    8. Kałuża, Tomasz & Hämmerling, Mateusz & Zawadzki, Paweł & Czekała, Wojciech & Kasperek, Robert & Sojka, Mariusz & Mokwa, Marian & Ptak, Mariusz & Szkudlarek, Arkadiusz & Czechlowski, Mirosław & Dach, J, 2022. "The hydropower sector in Poland: Historical development and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Talukdar, Parag K. & Kulkarni, Vinayak & Saha, Ujjwal K., 2018. "Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation," Renewable Energy, Elsevier, vol. 127(C), pages 158-167.
    10. Mar Alonso-Martinez & José Luis Suárez Sierra & Juan José del Coz Díaz & Juan Enrique Martinez-Martinez, 2020. "A New Methodology to Design Sustainable Archimedean Screw Turbines as Green Energy Generators," IJERPH, MDPI, vol. 17(24), pages 1-14, December.
    11. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    12. Angeloudis, Athanasios & Falconer, Roger A., 2017. "Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics," Renewable Energy, Elsevier, vol. 114(PA), pages 337-351.
    13. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    14. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    16. Angeloudis, Athanasios & Ahmadian, Reza & Falconer, Roger A. & Bockelmann-Evans, Bettina, 2016. "Numerical model simulations for optimisation of tidal lagoon schemes," Applied Energy, Elsevier, vol. 165(C), pages 522-536.
    17. Clemente Gotelli & Mirko Musa & Michele Guala & Cristián Escauriaza, 2019. "Experimental and Numerical Investigation of Wake Interactions of Marine Hydrokinetic Turbines," Energies, MDPI, vol. 12(16), pages 1-17, August.
    18. Wiroon Monatrakul & Kritsadang Senawong & Piyawat Sritram & Ratchaphon Suntivarakorn, 2023. "A Comparison Study of Hydro-Compact Generators with Horizontal Spiral Turbines (HSTs) and a Three-Blade Turbine Used in Irrigation Canals," Energies, MDPI, vol. 16(5), pages 1-15, February.
    19. Zhang, Aiming & Liu, Sen & Ma, Yong & Hu, Chao & Li, Zhengyu, 2022. "Field tests on model efficiency of twin vertical axis helical hydrokinetic turbines," Energy, Elsevier, vol. 247(C).
    20. Benzon, D.S. & Aggidis, G.A. & Anagnostopoulos, J.S., 2016. "Development of the Turgo Impulse turbine: Past and present," Applied Energy, Elsevier, vol. 166(C), pages 1-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:941-954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.