IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v111y2019icp57-74.html
   My bibliography  Save this article

Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review

Author

Listed:
  • Fumey, B.
  • Weber, R.
  • Baldini, L.

Abstract

In sorption heat storage, one of the sources of discrepancy between theoretical material based energy storage potential and resulting system performance is the choice of process type. In this paper, in order to understand this performance deviation, a sorption heat storage process categorisation is proposed. This is followed by a review of reported sorption systems categorised according to the proposed process classification. An analysis of the reported systems is then undertaken, focusing on the ratio of resulting temperature gain in sorption (ad- or absorption), compared to required temperature lift in desorption. This measure is termed temperature effectiveness and enables a form of system performance evaluation in the broad landscape of sorption thermal energy storage demonstrators. It is argued that other performance parameters such as volumetric energy storage density and volumetric charge and discharge power density are not adequate for comparison due to the highly varying testing conditions applied. From the system evaluation, it is seen that best temperature effectiveness is generally found in a closed, transported process with the ability of single sorbent pass and true counter flow heat exchange.

Suggested Citation

  • Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
  • Handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:57-74
    DOI: 10.1016/j.rser.2019.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119303120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wyttenbach, Joël & Bougard, Jacques & Descy, Gilbert & Skrylnyk, Oleksandr & Courbon, Emilie & Frère, Marc & Bruyat, Fabien, 2018. "Performances and modelling of a circular moving bed thermochemical reactor for seasonal storage," Applied Energy, Elsevier, vol. 230(C), pages 803-815.
    2. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    3. Yan, T. & Wang, R.Z. & Li, T.X., 2018. "Experimental investigation on thermochemical heat storage using manganese chloride/ammonia," Energy, Elsevier, vol. 143(C), pages 562-574.
    4. Daguenet-Frick, Xavier & Gantenbein, Paul & Müller, Jonas & Fumey, Benjamin & Weber, Robert, 2017. "Seasonal thermochemical energy storage: Comparison of the experimental results with the modelling of the falling film tube bundle heat and mass exchanger unit," Renewable Energy, Elsevier, vol. 110(C), pages 162-173.
    5. Solé, Aran & Martorell, Ingrid & Cabeza, Luisa F., 2015. "State of the art on gas–solid thermochemical energy storage systems and reactors for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 386-398.
    6. Aydin, Devrim & Casey, Sean P. & Chen, Xiangjie & Riffat, Saffa, 2018. "Numerical and experimental analysis of a novel heat pump driven sorption storage heater," Applied Energy, Elsevier, vol. 211(C), pages 954-974.
    7. Mette, Barbara & Kerskes, Henner & Drück, Harald & Müller-Steinhagen, Hans, 2013. "New highly efficient regeneration process for thermochemical energy storage," Applied Energy, Elsevier, vol. 109(C), pages 352-359.
    8. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2014. "Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance," Applied Energy, Elsevier, vol. 129(C), pages 177-186.
    9. Zondag, Herbert & Kikkert, Benjamin & Smeding, Simon & Boer, Robert de & Bakker, Marco, 2013. "Prototype thermochemical heat storage with open reactor system," Applied Energy, Elsevier, vol. 109(C), pages 360-365.
    10. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
    11. Le Pierrès, Nolwenn & Huaylla, Fredy & Stutz, Benoit & Perraud, Julien, 2017. "Long-term solar heat storage process by absorption with the KCOOH/H2O couple: Experimental investigation," Energy, Elsevier, vol. 141(C), pages 1313-1323.
    12. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    13. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    14. Dannemand, Mark & Johansen, Jakob Berg & Kong, Weiqiang & Furbo, Simon, 2016. "Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing supercooling," Applied Energy, Elsevier, vol. 177(C), pages 591-601.
    15. Li, T.X. & Wu, S. & Yan, T. & Wang, R.Z. & Zhu, J., 2017. "Experimental investigation on a dual-mode thermochemical sorption energy storage system," Energy, Elsevier, vol. 140(P1), pages 383-394.
    16. Zhao, Y.J. & Wang, R.Z. & Li, T.X. & Nomura, Y., 2016. "Investigation of a 10 kWh sorption heat storage device for effective utilization of low-grade thermal energy," Energy, Elsevier, vol. 113(C), pages 739-747.
    17. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    18. Fumey, B. & Weber, R. & Baldini, L., 2017. "Liquid sorption heat storage – A proof of concept based on lab measurements with a novel spiral fined heat and mass exchanger design," Applied Energy, Elsevier, vol. 200(C), pages 215-225.
    19. Li, T.X. & Xu, J.X. & Yan, T. & Wang, R.Z., 2016. "Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage," Energy, Elsevier, vol. 107(C), pages 347-359.
    20. Dannemand, Mark & Dragsted, Janne & Fan, Jianhua & Johansen, Jakob Berg & Kong, Weiqiang & Furbo, Simon, 2016. "Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures," Applied Energy, Elsevier, vol. 169(C), pages 72-80.
    21. Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
    22. Johannes, Kévyn & Kuznik, Frédéric & Hubert, Jean-Luc & Durier, Francois & Obrecht, Christian, 2015. "Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings," Applied Energy, Elsevier, vol. 159(C), pages 80-86.
    23. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    24. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1314-1331.
    25. N'Tsoukpoe, K.E. & Le Pierrès, N. & Luo, L., 2013. "Experimentation of a LiBr–H2O absorption process for long-term solar thermal storage: Prototype design and first results," Energy, Elsevier, vol. 53(C), pages 179-198.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Ziya & Zhao, Bingchen & Chen, Weidong & Ernest Chua, Kian Jon & Wang, Ruzhu, 2023. "Strategies of stable thermal output and humidity dual control for a packed-bed adsorption thermal battery," Energy, Elsevier, vol. 278(PA).
    2. Fumey, Benjamin & Weber, Robert & Baldini, Luca, 2023. "Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process," Applied Energy, Elsevier, vol. 335(C).
    3. N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Wang, Pengfei & Huo, Xiangyan & Wang, Ruzhu & Li, Tingxian, 2022. "Enhanced thermal conductivity and adsorption rate of zeolite 13X adsorbent by compression-induced molding method for sorption thermal battery," Energy, Elsevier, vol. 240(C).
    5. Andrea Frazzica & Vincenza Brancato & Belal Dawoud, 2020. "Unified Methodology to Identify the Potential Application of Seasonal Sorption Storage Technology," Energies, MDPI, vol. 13(5), pages 1-17, February.
    6. Pavangat, Athul & Bindhani, Omkar Satyaprakash & Naik, B. Kiran, 2023. "Year-round and techno-economic feasibility analyses on integration of absorption based mobile thermochemical energy storage with building cooling system in tropical climate," Energy, Elsevier, vol. 263(PE).
    7. Carla Delmarre & Marie-Anne Resmond & Frédéric Kuznik & Christian Obrecht & Bao Chen & Kévyn Johannes, 2021. "Artificial Neural Network Simulation of Energetic Performance for Sorption Thermal Energy Storage Reactors," Energies, MDPI, vol. 14(11), pages 1-12, June.
    8. Yan, Ting & Kuai, Z.H. & Wu, S.F., 2020. "Experimental investigation on a MnCl2–SrCl2/NH3 thermochemical resorption heat storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 874-883.
    9. Salviati, Sergio & Carosio, Federico & Cantamessa, Francesco & Medina, Lilian & Berglund, Lars A. & Saracco, Guido & Fina, Alberto, 2020. "Ice-templated nanocellulose porous structure enhances thermochemical storage kinetics in hydrated salt/graphite composites," Renewable Energy, Elsevier, vol. 160(C), pages 698-706.
    10. Benjamin Fumey & Luca Baldini, 2021. "Static Temperature Guideline for Comparative Testing of Sorption Heat Storage Systems for Building Application," Energies, MDPI, vol. 14(13), pages 1-15, June.
    11. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Tzinnis, Efstratios & Baldini, Luca, 2021. "Combining sorption storage and electric heat pumps to foster integration of solar in buildings," Applied Energy, Elsevier, vol. 301(C).
    13. Luca Baldini & Benjamin Fumey, 2020. "Seasonal Energy Flexibility Through Integration of Liquid Sorption Storage in Buildings," Energies, MDPI, vol. 13(11), pages 1-13, June.
    14. Yan, Ting & Zhang, Hong & Yu, Nan & Li, Dong & Pan, Q.W., 2022. "Performance of thermochemical adsorption heat storage system based on MnCl2-NH3 working pair," Energy, Elsevier, vol. 239(PD).
    15. Zhang, Hong & Yan, Ting & Yu, Nan & Li, Z.H. & Pan, Q.W., 2022. "Sorption based long-term thermal energy storage with strontium chloride/ammonia," Energy, Elsevier, vol. 239(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Fumey, Benjamin & Weber, Robert & Baldini, Luca, 2023. "Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process," Applied Energy, Elsevier, vol. 335(C).
    3. Benjamin Fumey & Luca Baldini, 2021. "Static Temperature Guideline for Comparative Testing of Sorption Heat Storage Systems for Building Application," Energies, MDPI, vol. 14(13), pages 1-15, June.
    4. Gaeini, M. & Rouws, A.L. & Salari, J.W.O. & Zondag, H.A. & Rindt, C.C.M., 2018. "Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage," Applied Energy, Elsevier, vol. 212(C), pages 1165-1177.
    5. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
    7. Kant, K. & Pitchumani, R., 2022. "Advances and opportunities in thermochemical heat storage systems for buildings applications," Applied Energy, Elsevier, vol. 321(C).
    8. Tzinnis, Efstratios & Baldini, Luca, 2021. "Combining sorption storage and electric heat pumps to foster integration of solar in buildings," Applied Energy, Elsevier, vol. 301(C).
    9. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    10. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    12. Aydin, Devrim & Casey, Sean P. & Chen, Xiangjie & Riffat, Saffa, 2018. "Numerical and experimental analysis of a novel heat pump driven sorption storage heater," Applied Energy, Elsevier, vol. 211(C), pages 954-974.
    13. Englmair, Gerald & Moser, Christoph & Schranzhofer, Hermann & Fan, Jianhua & Furbo, Simon, 2019. "A solar combi-system utilizing stable supercooling of sodium acetate trihydrate for heat storage: Numerical performance investigation," Applied Energy, Elsevier, vol. 242(C), pages 1108-1120.
    14. Yan, Ting & Kuai, Z.H. & Wu, S.F., 2020. "Experimental investigation on a MnCl2–SrCl2/NH3 thermochemical resorption heat storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 874-883.
    15. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
    16. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    17. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    18. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    19. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    20. Han, Xiaojing & Liu, Shuli & Zeng, Cheng & Yang, Liu & Shukla, Ashish & Shen, Yongliang, 2020. "Investigating the performance enhancement of copper fins on trapezoidal thermochemical reactor," Renewable Energy, Elsevier, vol. 150(C), pages 1037-1046.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:57-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.