IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223013725.html
   My bibliography  Save this article

Strategies of stable thermal output and humidity dual control for a packed-bed adsorption thermal battery

Author

Listed:
  • Zeng, Ziya
  • Zhao, Bingchen
  • Chen, Weidong
  • Ernest Chua, Kian Jon
  • Wang, Ruzhu

Abstract

Water-based adsorption thermal battery (ATB) could provide huge possibility in widespread applications; especially for space heating, leading to appreciable energy saving and low-grade heat energy utilization. A proof-of-concept prototype based on composite adsorbents has been constructed to investigate the thermal performances of a packed-bed ATB. A possible strategy of tunning airflow rate for performance regulation is proposed and studied to realize stable thermal output. Additional experimental results indicated that the output temperature and heating power can be synchronously stabilized through progressive tunability of loop airflow rate in the loop-cycle ATB system. The output RH spans 40–60% along the effective discharging process, enabling a controllable humidity management in the application of direct space heating considering human thermal comfort. A three-dimensional computational model for predicting the overall thermal output performances of a packed-bed adsorption thermal battery is further developed and established. The simulation results reveal that an effective heating time of 8.6 h with a discharging threshold temperature of 24 °C, and an average power density of 19.3 kW m−3 can be achieved with a maximum heat discharging efficiency of 63.4%. It is, therefore, apparent that the ATB is capable of achieving stable thermal outputs for space heating applications.

Suggested Citation

  • Zeng, Ziya & Zhao, Bingchen & Chen, Weidong & Ernest Chua, Kian Jon & Wang, Ruzhu, 2023. "Strategies of stable thermal output and humidity dual control for a packed-bed adsorption thermal battery," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013725
    DOI: 10.1016/j.energy.2023.127978
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223013725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    2. An, G.L. & Wang, L.W. & Gao, J., 2019. "Two-stage cascading desorption cycle for sorption thermal energy storage," Energy, Elsevier, vol. 174(C), pages 1091-1099.
    3. Fan, Man & Suo, Hanxiao & Yang, Hua & Zhang, Xuemei & Li, Xiaofei & Guo, Leihong & Kong, Xiangfei, 2022. "Experimental study on thermophysical parameters of a solar assisted cascaded latent heat thermal energy storage (CLHTES) system," Energy, Elsevier, vol. 256(C).
    4. Li, Gang & Qian, Suxin & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard, 2014. "Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application," Energy, Elsevier, vol. 65(C), pages 675-691.
    5. Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
    6. Yufei Zhang & Lei Wu & Xianfeng Wang & Jianyong Yu & Bin Ding, 2020. "Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Narayanan, Shankar & Li, Xiansen & Yang, Sungwoo & Kim, Hyunho & Umans, Ari & McKay, Ian S. & Wang, Evelyn N., 2015. "Thermal battery for portable climate control," Applied Energy, Elsevier, vol. 149(C), pages 104-116.
    8. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    9. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xudong & Li, Chunzhe & Yang, Zhenning & Dong, Yan & Wang, Fuqiang & Cheng, Ziming & Yang, Chun, 2024. "Golf-ball-inspired phase change material capsule: Experimental and numerical simulation analysis of flow characteristics and thermal performance," Energy, Elsevier, vol. 293(C).
    2. Zeng, Ziya & Zhao, Bingchen & Yang, Xinge & Chen, Zhihui & Yu, Jiaqi & Chua, Kian Jon Ernest & Wang, Ruzhu, 2024. "Predictive thermal performance analysis of T-wall based adsorption thermal battery for solar building heating," Energy, Elsevier, vol. 294(C).
    3. Cui, Zhaopeng & Du, Shuai & Wang, Ruzhu & Cheng, Chao & Wei, Liuzhu & Wang, Xuejiao, 2024. "Development and experimental study of a small-scale adsorption cold storage prototype with stable and tunable output for off-grid cooling," Energy, Elsevier, vol. 300(C).
    4. Zhu, Nannan & Tang, Fei, 2024. "Experimental study on flame morphology, ceiling temperature and carbon monoxide generation characteristic of prismatic lithium iron phosphate battery fires with different states of charge in a tunnel," Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Yan, Ting & Kuai, Z.H. & Wu, S.F., 2020. "Experimental investigation on a MnCl2–SrCl2/NH3 thermochemical resorption heat storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 874-883.
    4. Clark, Ruby-Jean & Farid, Mohammed, 2022. "Experimental investigation into cascade thermochemical energy storage system using SrCl2-cement and zeolite-13X materials," Applied Energy, Elsevier, vol. 316(C).
    5. Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
    6. Benjamin Fumey & Luca Baldini, 2021. "Static Temperature Guideline for Comparative Testing of Sorption Heat Storage Systems for Building Application," Energies, MDPI, vol. 14(13), pages 1-15, June.
    7. Zhang, Hong & Yan, Ting & Yu, Nan & Li, Z.H. & Pan, Q.W., 2022. "Sorption based long-term thermal energy storage with strontium chloride/ammonia," Energy, Elsevier, vol. 239(PD).
    8. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    9. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    10. Salviati, Sergio & Carosio, Federico & Cantamessa, Francesco & Medina, Lilian & Berglund, Lars A. & Saracco, Guido & Fina, Alberto, 2020. "Ice-templated nanocellulose porous structure enhances thermochemical storage kinetics in hydrated salt/graphite composites," Renewable Energy, Elsevier, vol. 160(C), pages 698-706.
    11. Tzinnis, Efstratios & Baldini, Luca, 2021. "Combining sorption storage and electric heat pumps to foster integration of solar in buildings," Applied Energy, Elsevier, vol. 301(C).
    12. Zhang, Yannan & Yan, Taisen & Wang, Ruzhu, 2024. "A new strategy of dual-material reactors for stable thermal output of sorption thermal battery," Energy, Elsevier, vol. 293(C).
    13. Elsayed, Ahmed & Elsayed, Eman & AL-Dadah, Raya & Mahmoud, Saad & Elshaer, Amr & Kaialy, Waseem, 2017. "Thermal energy storage using metal–organic framework materials," Applied Energy, Elsevier, vol. 186(P3), pages 509-519.
    14. Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
    15. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    16. Li, T.X. & Wu, S. & Yan, T. & Wang, R.Z. & Zhu, J., 2017. "Experimental investigation on a dual-mode thermochemical sorption energy storage system," Energy, Elsevier, vol. 140(P1), pages 383-394.
    17. Andrea Frazzica & Vincenza Brancato & Belal Dawoud, 2020. "Unified Methodology to Identify the Potential Application of Seasonal Sorption Storage Technology," Energies, MDPI, vol. 13(5), pages 1-17, February.
    18. Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
    19. Strong, Curtis & Carrier, Ye & Handan Tezel, F., 2022. "Experimental optimization of operating conditions for an open bulk-scale silica gel/water vapour adsorption energy storage system," Applied Energy, Elsevier, vol. 312(C).
    20. Kant, K. & Pitchumani, R., 2022. "Advances and opportunities in thermochemical heat storage systems for buildings applications," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.