IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224003670.html
   My bibliography  Save this article

Golf-ball-inspired phase change material capsule: Experimental and numerical simulation analysis of flow characteristics and thermal performance

Author

Listed:
  • Chen, Xudong
  • Li, Chunzhe
  • Yang, Zhenning
  • Dong, Yan
  • Wang, Fuqiang
  • Cheng, Ziming
  • Yang, Chun

Abstract

Latent heat thermal energy storage (TES) has garnered considerable attention in solar energy storage. However, its development remains limited due to the poor flow characteristics and thermal performance of the phase change material (PCM) capsule. The dimples of the golf ball can disturb the fluid, reduce external differential pressure resistance, and enhance internal natural convection intensity, the idea of a novel PCM capsule was proposed. Both experimental and numerical analyses revealed improvements achieved by the novel capsule design. The constrained and unconstrained melting time was reduced by 8.60% and 9.10%, respectively, compared to conventional spherical capsules. Additionally, we proposed a dimensionless comprehensive evaluation method (DCEM) to assess the performance of capsules with different structures in terms of flowability, melting ability, and economic viability. It was observed that targeted enlargement and deepening of the dimples substantially improved the holistic performance of the capsule. The optimized individual capsule showcased a remarkable 38.99% improvement in holistic performance, the TES system filled with the capsules demonstrated a reduction in full charging time by 9.18% and an increase in average temperature by 9.06%.

Suggested Citation

  • Chen, Xudong & Li, Chunzhe & Yang, Zhenning & Dong, Yan & Wang, Fuqiang & Cheng, Ziming & Yang, Chun, 2024. "Golf-ball-inspired phase change material capsule: Experimental and numerical simulation analysis of flow characteristics and thermal performance," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003670
    DOI: 10.1016/j.energy.2024.130595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.