IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v111y2019icp422-441.html
   My bibliography  Save this article

Recent progress in the thermal and catalytic conversion of lignin

Author

Listed:
  • Ha, Jeong-Myeong
  • Hwang, Kyung-Ran
  • Kim, Young-Min
  • Jae, Jungho
  • Kim, Kwang Ho
  • Lee, Hyung Won
  • Kim, Jae-Young
  • Park, Young-Kwon

Abstract

The issues over increases in energy demand and environmental pollution attributed to excessive use of fossil fuel have been the driving forces of the exploration for eco-friendly resource. Lignocellulosic biomass consisting of carbohydrates and lignin can be a renewable feedstock for replacing fossil fuels in the future because it is a plentiful and carbon neutral material. Especially, lignin, cross-linked phenolic polymers, is a topic of interest owing to its abundant production from pulp/paper industries as well as lignocellulose based biorefinery. The large potential of platform chemicals and biofuels from lignin has opened up an extensive range of opportunities to develop thermal and catalytic conversion technology. Over a few decades, several lignin conversion processes including catalytic pyrolysis, catalytic depolymerization, and catalytic oxidation have been developed to improve target products yields and to suppress side reactions. More recently, lignin-first approaches which maintain carbohydrates intact by selective extraction of lignin as valuable phenolics from whole biomass has been suggested. This review introduces recent ten years progress on thermal and catalytic conversion technology in terms of process type, catalyst development, and target products. This review is expected to offer an influential information for future research into the thermal and catalytic conversion of lignin as well as lignocellulosic feedstock.

Suggested Citation

  • Ha, Jeong-Myeong & Hwang, Kyung-Ran & Kim, Young-Min & Jae, Jungho & Kim, Kwang Ho & Lee, Hyung Won & Kim, Jae-Young & Park, Young-Kwon, 2019. "Recent progress in the thermal and catalytic conversion of lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 422-441.
  • Handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:422-441
    DOI: 10.1016/j.rser.2019.05.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119303478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.05.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Shimin & Li, Xianglan & Fan, Juan & Chang, Jie, 2013. "Hydrothermal conversion of lignin: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 546-558.
    2. Azadi, Pooya & Inderwildi, Oliver R. & Farnood, Ramin & King, David A., 2013. "Liquid fuels, hydrogen and chemicals from lignin: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 506-523.
    3. Cheng, Feng & Brewer, Catherine E., 2017. "Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 673-722.
    4. Lee, Hyung Won & Jun, Bo Ram & Kim, Hannah & Kim, Do Heui & Jeon, Jong-Ki & Park, Sung Hoon & Ko, Chang Hyun & Kim, Tae-Wan & Park, Young-Kwon, 2015. "Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites," Energy, Elsevier, vol. 81(C), pages 33-40.
    5. Long, Jinxing & Xu, Ying & Wang, Tiejun & Yuan, Zhengqiu & Shu, Riyang & Zhang, Qi & Ma, Longlong, 2015. "Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination," Applied Energy, Elsevier, vol. 141(C), pages 70-79.
    6. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    7. Xiaona Lin & Shujuan Sui & Shun Tan & Charles U. Pittman & Jianping Sun & Zhijun Zhang, 2015. "Fast Pyrolysis of Four Lignins from Different Isolation Processes Using Py-GC/MS," Energies, MDPI, vol. 8(6), pages 1-15, June.
    8. Li, Xiangping & Chen, Guanyi & Liu, Caixia & Ma, Wenchao & Yan, Beibei & Zhang, Jianguang, 2017. "Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 296-308.
    9. Patrick Hemberger & Victoria B. F. Custodis & Andras Bodi & Thomas Gerber & Jeroen A. van Bokhoven, 2017. "Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    10. Lee, Hyung Won & Kim, Young-Min & Jae, Jungho & Lee, Soo Min & Jung, Sang-Chul & Park, Young-Kwon, 2019. "The use of calcined seashell for the prevention of char foaming/agglomeration and the production of high-quality oil during the pyrolysis of lignin," Renewable Energy, Elsevier, vol. 144(C), pages 147-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Hakyoung Kim & Saeyeon Kim & Jeongmin Lee & Minyoung Kim & Dohee Kwon & Sungyup Jung, 2023. "Pyrolysis of rice husk using CO2 for enhanced energy production and soil amendment," Energy & Environment, , vol. 34(4), pages 873-885, June.
    3. Ali Abdulkhani & Zahra Echresh Zadeh & Solomon Gajere Bawa & Fubao Sun & Meysam Madadi & Xueming Zhang & Basudeb Saha, 2023. "Comparative Production of Bio-Oil from In Situ Catalytic Upgrading of Fast Pyrolysis of Lignocellulosic Biomass," Energies, MDPI, vol. 16(6), pages 1-19, March.
    4. Nwosu, Ugochukwu & Wang, Aiguo & Palma, Bruna & Zhao, Heng & Khan, Mohd Adnan & Kibria, Md & Hu, Jinguang, 2021. "Selective biomass photoreforming for valuable chemicals and fuels: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Radhakrishnan, Rokesh & Patra, Pradipta & Das, Manali & Ghosh, Amit, 2021. "Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Fan, Yongsheng & Lu, Dongsheng & Han, Yue & Yang, Jiaheng & Qian, Cheng & Li, Binyu, 2023. "Production of light aromatics from biomass components co-pyrolyzed with polyethylene via non-thermal plasma synergistic upgrading," Energy, Elsevier, vol. 265(C).
    7. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).
    8. Wang, Bin & Wang, Shuang-Fei & Lam, Su Shiung & Sonne, Christian & Yuan, Tong-Qi & Song, Guo-Yong & Sun, Run-Cang, 2020. "A review on production of lignin-based flocculants: Sustainable feedstock and low carbon footprint applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dessbesell, Luana & Paleologou, Michael & Leitch, Mathew & Pulkki, Reino & Xu, Chunbao (Charles), 2020. "Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Matteo Borella & Alessandro A. Casazza & Gabriella Garbarino & Paola Riani & Guido Busca, 2022. "A Study of the Pyrolysis Products of Kraft Lignin," Energies, MDPI, vol. 15(3), pages 1-15, January.
    3. Patil, Vivek & Adhikari, Sushil & Cross, Phillip & Jahromi, Hossein, 2020. "Progress in the solvent depolymerization of lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Ryu, Hae Won & Lee, Hyung Won & Jae, Jungho & Park, Young-Kwon, 2019. "Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: Effect of magnesium oxide catalyst," Energy, Elsevier, vol. 179(C), pages 669-675.
    5. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    6. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. He, Yifeng & Zhao, Yingnan & Chai, Meiyun & Zhou, Zhongyue & Sarker, Manobendro & Li, Chong & Liu, Ronghou & Cai, Junmeng & Liu, Xinghua, 2020. "Comparative study of fast pyrolysis, hydropyrolysis and catalytic hydropyrolysis of poplar sawdust and rice husk in a modified Py-GC/MS microreactor system: Insights into product distribution, quantum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Asina, FNU & Brzonova, Ivana & Kozliak, Evguenii & Kubátová, Alena & Ji, Yun, 2017. "Microbial treatment of industrial lignin: Successes, problems and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1179-1205.
    9. Ambursa, Murtala M. & Juan, Joon Ching & Yahaya, Y. & Taufiq-Yap, Y.H. & Lin, Yu-Chuan & Lee, Hwei Voon, 2021. "A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    11. Minghao Zhou & Junming Xu & Jianchun Jiang & Brajendra K. Sharma, 2018. "A Review of Microwave Assisted Liquefaction of Lignin in Hydrogen Donor Solvents: Effect of Solvents and Catalysts," Energies, MDPI, vol. 11(11), pages 1-15, October.
    12. Shamsul, N.S. & Kamarudin, S.K. & Rahman, N.A., 2017. "Conversion of bio-oil to bio gasoline via pyrolysis and hydrothermal: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 538-549.
    13. Rozzeta Dolah & Rohit Karnik & Halimaton Hamdan, 2021. "A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    14. Chen, Zhu & Wan, Caixia, 2017. "Biological valorization strategies for converting lignin into fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 610-621.
    15. Ummartyotin, Sarute & Manuspiya, Hathaikarn, 2015. "A critical review on cellulose: From fundamental to an approach on sensor technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 402-412.
    16. Li, Shiliang & Li, Yanqi & Wu, Jun & Wang, Zheng & Wang, Fang & Deng, Li & Nie, Kaili, 2020. "Synthesis of low pour point bio-aviation fuel from renewable abietic acid," Renewable Energy, Elsevier, vol. 155(C), pages 1042-1050.
    17. Ochoa, Aitor & Vicente, Héctor & Sierra, Irene & Arandes, José M. & Castaño, Pedro, 2020. "Implications of feeding or cofeeding bio-oil in the fluid catalytic cracker (FCC) in terms of regeneration kinetics and energy balance," Energy, Elsevier, vol. 209(C).
    18. Tu, Ren & Sun, Yan & Wu, Yujian & Fan, Xudong & Cheng, Shuchao & Jiang, Enchen & Xu, Xiwei, 2021. "Selective production of furfural and phenols from rice husk: the influence of synergetic pretreatments with different order," Renewable Energy, Elsevier, vol. 168(C), pages 297-308.
    19. Garlapati, Vijay Kumar & Chandel, Anuj K. & Kumar, S.P. Jeevan & Sharma, Swati & Sevda, Surajbhan & Ingle, Avinash P. & Pant, Deepak, 2020. "Circular economy aspects of lignin: Towards a lignocellulose biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    20. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:422-441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.