IDEAS home Printed from
   My bibliography  Save this article

A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis


  • Li, Jimeng
  • Chen, Xuefeng
  • Du, Zhaohui
  • Fang, Zuowei
  • He, Zhengjia


Condition monitoring of a wind turbine is important to extend the wind turbine system's reliability and useful life. However, in many cases, to extract feature components becomes challenging and the applicability of information drops down due to the large amount of noise. Stochastic resonance (SR), used as a method of utilising noise to amplify weak signals in nonlinear systems, can detect weak signals overwhelmed in the noise. Therefore, a new noise-controlled second-order enhanced SR method based on the Morlet wavelet transform is proposed to extract fault feature for wind turbine vibration signals in the present study. The second-order SR method can obtain better denoising effect and higher signal-to-noise ratio (SNR) of resonance output by means of twice integral transform compared with the traditional SR method. Morlet wavelet transform can obtain finer frequency partitions and overcome the frequency aliasing compared with the classical wavelet transform. Therefore, through Morlet wavelet transform, the noise intensity of different scales can be adjusted to realize the resonance detection of weak periodic signal whatever it is a low-frequency signal or high-frequency signal. Thus the method is well-suited for enhancement of weak fault identification, whose effectiveness has been verified by the practical vibration signals carrying fault information. Finally, the proposed method has been applied to extract feature of the looseness fault of shaft coupling of wind turbine successfully.

Suggested Citation

  • Li, Jimeng & Chen, Xuefeng & Du, Zhaohui & Fang, Zuowei & He, Zhengjia, 2013. "A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis," Renewable Energy, Elsevier, vol. 60(C), pages 7-19.
  • Handle: RePEc:eee:renene:v:60:y:2013:i:c:p:7-19
    DOI: 10.1016/j.renene.2013.04.005

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Feng, Zhipeng & Liang, Ming & Zhang, Yi & Hou, Shumin, 2012. "Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation," Renewable Energy, Elsevier, vol. 47(C), pages 112-126.
    2. Kusiak, Andrew & Verma, Anoop, 2012. "Analyzing bearing faults in wind turbines: A data-mining approach," Renewable Energy, Elsevier, vol. 48(C), pages 110-116.
    3. Amirat, Y. & Benbouzid, M.E.H. & Al-Ahmar, E. & Bensaker, B. & Turri, S., 2009. "A brief status on condition monitoring and fault diagnosis in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2629-2636, December.
    4. Tang, Baoping & Liu, Wenyi & Song, Tao, 2010. "Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution," Renewable Energy, Elsevier, vol. 35(12), pages 2862-2866.
    5. An, Xueli & Jiang, Dongxiang & Li, Shaohua & Zhao, Minghao, 2011. "Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine," Energy, Elsevier, vol. 36(9), pages 5508-5520.
    6. Yang, Jinshui & Peng, Chaoyi & Xiao, Jiayu & Zeng, Jingcheng & Yuan, Yun, 2012. "Application of videometric technique to deformation measurement for large-scale composite wind turbine blade," Applied Energy, Elsevier, vol. 98(C), pages 292-300.
    7. Entezami, M. & Hillmansen, S. & Weston, P. & Papaelias, M.Ph., 2012. "Fault detection and diagnosis within a wind turbine mechanical braking system using condition monitoring," Renewable Energy, Elsevier, vol. 47(C), pages 175-182.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Chen, Jinglong & Pan, Jun & Zhang, Chunlin & Luo, Xiaoyu & Zhou, Zitong & Wang, Biao, 2017. "Specialization improved nonlocal means to detect periodic impulse feature for generator bearing fault identification," Renewable Energy, Elsevier, vol. 103(C), pages 448-467.
    2. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    3. He, Guolin & Ding, Kang & Li, Weihua & Jiao, Xintao, 2016. "A novel order tracking method for wind turbine planetary gearbox vibration analysis based on discrete spectrum correction technique," Renewable Energy, Elsevier, vol. 87(P1), pages 364-375.
    4. Chen, Jinglong & Pan, Jun & Li, Zipeng & Zi, Yanyang & Chen, Xuefeng, 2016. "Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals," Renewable Energy, Elsevier, vol. 89(C), pages 80-92.
    5. Teng, Wei & Ding, Xian & Zhang, Xiaolong & Liu, Yibing & Ma, Zhiyong, 2016. "Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform," Renewable Energy, Elsevier, vol. 93(C), pages 591-598.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:60:y:2013:i:c:p:7-19. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.