IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v58y2013icp60-67.html
   My bibliography  Save this article

Sustainable bioenergy production from tofu-processing wastewater by anaerobic hydrogen fermentation for onsite energy recovery

Author

Listed:
  • Lay, Chyi-How
  • Sen, Biswarup
  • Huang, Shih-Ching
  • Chen, Chin-Chao
  • Lin, Chiu-Yue

Abstract

The conversion efficiency of tofu-processing wastewater (TPW) into hydrogen and ethanol for energy source in a tofu-making factory was evaluated by testing various sludge types, initial cultivation pH values, temperatures and substrate concentrations. Experimental results indicated that a peak H2 production yield (HY) of 107.5 mL-H2/g COD and ethanol concentration of 2181 mg-COD/L were at 35 °C, TPW concentration 20 g-COD/L and pH 5.5–6.0 in batch tests. Peak H2 production rate of 1.73 L H2/L-d was obtained at HRT 8 h in a CSTR. Main soluble metabolic products were acetate and butyrate during TPW fermentation. The peak total energy (H2 and ethanol) production efficiency of 485 J/g COD (160 J/g COD from H2 and 325 J/g COD from ethanol) and rate of 43.3 kJ/L-d (19.6 kJ/L-d from H2 and 23.7 kJ/L-d from ethanol) were obtained at HRT 12 and 8 h, respectively. This could support up to 3.5% of the annual energy consumption in a tofu-making factory and also reduce the carbon dioxide emission up to 6.65 ton CO2 equivalents/y.

Suggested Citation

  • Lay, Chyi-How & Sen, Biswarup & Huang, Shih-Ching & Chen, Chin-Chao & Lin, Chiu-Yue, 2013. "Sustainable bioenergy production from tofu-processing wastewater by anaerobic hydrogen fermentation for onsite energy recovery," Renewable Energy, Elsevier, vol. 58(C), pages 60-67.
  • Handle: RePEc:eee:renene:v:58:y:2013:i:c:p:60-67
    DOI: 10.1016/j.renene.2013.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113001675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, G.H. & Wang, L. & Kang, Z.H., 2010. "Feasibility of biohydrogen production from tofu wastewater with glutamine auxotrophic mutant of Rhodobacter sphaeroides," Renewable Energy, Elsevier, vol. 35(12), pages 2910-2913.
    2. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    3. Wu, Ta Yeong & Hay, Jacqueline Xiao Wen & Kong, Liu Bi & Juan, Joon Ching & Jahim, Jamaliah Md., 2012. "Recent advances in reuse of waste material as substrate to produce biohydrogen by purple non-sulfur (PNS) bacteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3117-3122.
    4. Chu, Chen-Yeon & Sen, Biswarup & Lay, Chyi-How & Lin, Yi-Chun & Lin, Chiu-Yue, 2012. "Direct fermentation of sweet potato to produce maximal hydrogen and ethanol," Applied Energy, Elsevier, vol. 100(C), pages 10-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    2. Kankal, Murat & Bayram, Adem & Uzlu, Ergun & Satilmiş, Uğur, 2014. "Assessment of hydropower and multi-dam power projects in Turkey," Renewable Energy, Elsevier, vol. 68(C), pages 118-133.
    3. Syaichurrozi, Iqbal & Basyir, M. Fakhri & Farraz, Rafi Muhammad & Rusdi, Rusdi, 2020. "A preliminary study: Effect of initial pH and Saccharomyces cerevisiae addition on biogas production from acid-pretreated Salvinia molesta and kinetics," Energy, Elsevier, vol. 207(C).
    4. Hegde, Swati & Lodge, Jeffery S. & Trabold, Thomas A., 2018. "Characteristics of food processing wastes and their use in sustainable alcohol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 510-523.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    2. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    3. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    4. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    5. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    7. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    8. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    9. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    10. Alessio Siciliano & Maria Assuntina Stillitano & Carlo Limonti, 2016. "Energetic Valorization of Wet Olive Mill Wastes through a Suitable Integrated Treatment: H 2 O 2 with Lime and Anaerobic Digestion," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    11. Heerenklage, J. & Rechtenbach, D. & Atamaniuk, I. & Alassali, A. & Raga, R. & Koch, K. & Kuchta, K., 2019. "Development of a method to produce standardised and storable inocula for biomethane potential tests – Preliminary steps," Renewable Energy, Elsevier, vol. 143(C), pages 753-761.
    12. Pecchi, Matteo & Baratieri, Marco, 2019. "Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 462-475.
    13. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    14. Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.
    15. Ghanimeh, Sophia & Khalil, Charbel Abou & Stoecklein, Daniel & Kommasojula, Aditya & Ganapathysubramanian, Baskar, 2020. "Flow sculpting enabled anaerobic digester for energy recovery from low-solid content waste," Renewable Energy, Elsevier, vol. 154(C), pages 841-848.
    16. Ahmad Dar, Rouf & Ahmad Dar, Eajaz & Kaur, Ajit & Gupta Phutela, Urmila, 2018. "Sweet sorghum-a promising alternative feedstock for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4070-4090.
    17. Lamis Yousra Shahrazed Khelifa Zouaghi & Hayet Djelal & Zineb Salem, 2021. "Anaerobic co-digestion of three organic wastes under mesophilic conditions: lab-scale and pilot-scale studies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9014-9028, June.
    18. Janina Piekutin & Monika Puchlik & Michał Haczykowski & Katarzyna Dyczewska, 2021. "The Efficiency of the Biogas Plant Operation Depending on the Substrate Used," Energies, MDPI, vol. 14(11), pages 1-12, May.
    19. Bundhoo, Zumar M.A. & Mauthoor, Sumayya & Mohee, Romeela, 2016. "Potential of biogas production from biomass and waste materials in the Small Island Developing State of Mauritius," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1087-1100.
    20. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:58:y:2013:i:c:p:60-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.