Sustainable bioenergy production from tofu-processing wastewater by anaerobic hydrogen fermentation for onsite energy recovery
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2013.03.011
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
- Wu, Ta Yeong & Hay, Jacqueline Xiao Wen & Kong, Liu Bi & Juan, Joon Ching & Jahim, Jamaliah Md., 2012. "Recent advances in reuse of waste material as substrate to produce biohydrogen by purple non-sulfur (PNS) bacteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3117-3122.
- Chu, Chen-Yeon & Sen, Biswarup & Lay, Chyi-How & Lin, Yi-Chun & Lin, Chiu-Yue, 2012. "Direct fermentation of sweet potato to produce maximal hydrogen and ethanol," Applied Energy, Elsevier, vol. 100(C), pages 10-18.
- Zheng, G.H. & Wang, L. & Kang, Z.H., 2010. "Feasibility of biohydrogen production from tofu wastewater with glutamine auxotrophic mutant of Rhodobacter sphaeroides," Renewable Energy, Elsevier, vol. 35(12), pages 2910-2913.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hegde, Swati & Lodge, Jeffery S. & Trabold, Thomas A., 2018. "Characteristics of food processing wastes and their use in sustainable alcohol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 510-523.
- Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
- Kankal, Murat & Bayram, Adem & Uzlu, Ergun & Satilmiş, Uğur, 2014. "Assessment of hydropower and multi-dam power projects in Turkey," Renewable Energy, Elsevier, vol. 68(C), pages 118-133.
- Syaichurrozi, Iqbal & Basyir, M. Fakhri & Farraz, Rafi Muhammad & Rusdi, Rusdi, 2020. "A preliminary study: Effect of initial pH and Saccharomyces cerevisiae addition on biogas production from acid-pretreated Salvinia molesta and kinetics," Energy, Elsevier, vol. 207(C).
- Syaichurrozi, Iqbal & Murtiningsih, Ika & Angelica, Elsa Christine & Susanti, Devi Yuni & Raharjo, Jarot & Timuda, Gerald Ensang & Darsono, Nono & Primeia, Sandia & Suwandi, Endang & Kurniawan, & Khae, 2024. "A preliminary study: Microbial electrolysis cell assisted anaerobic digestion for biogas production from Indonesian tofu-processing wastewater at various Fe additions," Renewable Energy, Elsevier, vol. 234(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
- Chen, Cheng & Guo, Wenshan & Ngo, Huu Hao & Lee, Duu-Jong & Tung, Kuo-Lun & Jin, Pengkang & Wang, Jie & Wu, Yun, 2016. "Challenges in biogas production from anaerobic membrane bioreactors," Renewable Energy, Elsevier, vol. 98(C), pages 120-134.
- Zhao, Zhiqiang & Zhang, Yaobin, 2019. "Application of ethanol-type fermentation in establishment of direct interspecies electron transfer: A practical engineering case study," Renewable Energy, Elsevier, vol. 136(C), pages 846-855.
- Park, Jun-Gyu & Jun, Hang-Bae & Heo, Tae-Young, 2021. "Retraining prior state performances of anaerobic digestion improves prediction accuracy of methane yield in various machine learning models," Applied Energy, Elsevier, vol. 298(C).
- Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
- Ware, Aidan & Power, Niamh, 2017. "Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions," Renewable Energy, Elsevier, vol. 104(C), pages 50-59.
- Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Sambusiti, C. & Monlau, F. & Ficara, E. & Carrère, H. & Malpei, F., 2013. "A comparison of different pre-treatments to increase methane production from two agricultural substrates," Applied Energy, Elsevier, vol. 104(C), pages 62-70.
- Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
- Yang, Lin & Hou, Huiyun & Lv, Haodong & Wu, Guanqi & Xu, Bang & Li, Yiming, 2025. "Exploring the development path of bioenergy carbon capture and storage for achieving carbon neutrality in China: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
- Duan, Yumin & Wang, Zhi & Ganeshan, Prabakaran & Sar, Taner & Xu, Suyun & Rajendran, Karthik & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Zhang, Zengqiang & Taherzadeh, Mohammad J. & A, 2025. "Anaerobic digestion in global bio-energy production for sustainable bioeconomy: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
- Paweł Sobczak & Kazimierz Zawiślak & Agnieszka Starek & Wioletta Żukiewicz-Sobczak & Agnieszka Sagan & Beata Zdybel & Dariusz Andrejko, 2020. "Compaction Process as a Concept of Press-Cake Production from Organic Waste," Sustainability, MDPI, vol. 12(4), pages 1-11, February.
- Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
- Kerstin Nielsen & Christina-Luise Roß & Marieke Hoffmann & Andreas Muskolus & Frank Ellmer & Timo Kautz, 2020. "The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity," Agriculture, MDPI, vol. 10(6), pages 1-20, June.
- Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
- Dong, He & Zhang, Haowen & Li, Haoyong & Zhang, Hui & Lu, Wenduo & Sun, Dezhi & Liu, Xinying & Dang, Yan, 2025. "Hybridization of photoanode and biocathode enables biogas upgrading via Methanosarcina barkeri," Renewable Energy, Elsevier, vol. 241(C).
- Jiang, Y. & Heaven, S. & Banks, C.J., 2012. "Strategies for stable anaerobic digestion of vegetable waste," Renewable Energy, Elsevier, vol. 44(C), pages 206-214.
- Di Maria, Francesco & Sisani, Federico & Norouzi, Omid & Mersky, Ronald L., 2019. "The effectiveness of anaerobic digestion of bio-waste in replacing primary energies: An EU28 case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 347-354.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:58:y:2013:i:c:p:60-67. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/renene/v58y2013icp60-67.html