IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v104y2017icp50-59.html
   My bibliography  Save this article

Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions

Author

Listed:
  • Ware, Aidan
  • Power, Niamh

Abstract

The kinetic evaluation of the methane potential from poultry slaughterhouse waste streams was performed using modified sigmoidal bacterial growth curve equations (Richards, logistic, Gompertz) in order to investigate their suitability to describe the degradation patterns associated with complex substrates, primarily composed of fats. The methane potential and degradation patterns under mesophilic conditions were assessed using Biochemical Methane Potential (BMP) assays. A nonlinear least-square regression analysis was performed to fit the sigmoidal functions to the cumulative methane production curves with respect to time generated from the BMP assays. In the cases modelled the Gompertz and logistic, three parameter models, sufficiently described the methane generation of the simple substrates (dissolved air flotation sludge) with no sign of acute inhibition due to high fat contents. When dealing with more complex degradation patterns of the substrates with a higher fat content (soft offals) and increased bioavailability of the organics, the three parameter models became insufficient in describing the experimental data due to features of the original growth functions, in particularly their fixed points of inflection. In such cases the fourth parameter afforded in the Richards model became critical allowing variability in the point of inflection allowing a much better fit to the experimental curves.

Suggested Citation

  • Ware, Aidan & Power, Niamh, 2017. "Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions," Renewable Energy, Elsevier, vol. 104(C), pages 50-59.
  • Handle: RePEc:eee:renene:v:104:y:2017:i:c:p:50-59
    DOI: 10.1016/j.renene.2016.11.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116310291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.11.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ware, Aidan & Power, Niamh, 2016. "Biogas from cattle slaughterhouse waste: Energy recovery towards an energy self-sufficient industry in Ireland," Renewable Energy, Elsevier, vol. 97(C), pages 541-549.
    2. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    3. S. Vieira & R. Hoffmann, 1977. "Comparison of the Logistic and the Gompertz Growth Functions Considering Additive and Multiplicative Error Terms," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(2), pages 143-148, June.
    4. Cirne, D.G. & Paloumet, X. & Björnsson, L. & Alves, M.M. & Mattiasson, B., 2007. "Anaerobic digestion of lipid-rich waste—Effects of lipid concentration," Renewable Energy, Elsevier, vol. 32(6), pages 965-975.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emebu, Samuel & Pecha, Jiří & Janáčová, Dagmar, 2022. "Review on anaerobic digestion models: Model classification & elaboration of process phenomena," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Kainthola, Jyoti & Shariq, Mohd & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2019. "Electrohydrolysis pretreatment methods to enhance the methane production from anaerobic digestion of rice straw using graphite electrode," Renewable Energy, Elsevier, vol. 142(C), pages 1-10.
    3. Liew, Zhen Kang & Chan, Yi Jing & Ho, Zheng Theng & Yip, Yew Hong & Teng, Ming Chern & Ameer Abbas bin, Ameer Illham Tuah & Chong, Siewhui & Show, Pau Loke & Chew, Chien Lye, 2021. "Biogas production enhancement by co-digestion of empty fruit bunch (EFB) with palm oil mill effluent (POME): Performance and kinetic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 766-777.
    4. Shitophyta Lukhi Mulia & Arnita Arnita & Wulansari Hilda Dyah Ana, 2023. "Evaluation and modelling of biogas production from batch anaerobic digestion of corn stover with oxalic acid," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 69(3), pages 151-157.
    5. Meneses-Quelal, W.O. & Velázquez-Martí, B. & Gaibor-Chávez, J. & Niño-Ruiz, Z., 2021. "Biochemical potential of methane (BMP) of camelid waste and the Andean region agricultural crops," Renewable Energy, Elsevier, vol. 168(C), pages 406-415.
    6. Huayong Zhang & Di An & Yudong Cao & Yonglan Tian & Jinxian He, 2021. "Modeling the Methane Production Kinetics of Anaerobic Co-Digestion of Agricultural Wastes Using Sigmoidal Functions," Energies, MDPI, vol. 14(2), pages 1-12, January.
    7. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Héctor Alfredo López-Aguilar & Bryan Morales-Durán & David Quiroz-Cardoza & Antonino Pérez-Hernández, 2023. "Lag Phase in the Anaerobic Co-Digestion of Sargassum spp. and Organic Domestic Waste," Energies, MDPI, vol. 16(14), pages 1-15, July.
    9. Momoh, O.L.Y. & Ouki, S., 2018. "Development of a novel fractal-like kinetic model for elucidating the effect of particle size on the mechanism of hydrolysis and biogas yield from ligno-cellulosic biomass," Renewable Energy, Elsevier, vol. 118(C), pages 71-83.
    10. Marin-Batista, J.D. & Villamil, J.A. & Qaramaleki, S.V. & Coronella, C.J. & Mohedano, A.F. & Rubia, M.A. de la, 2020. "Energy valorization of cow manure by hydrothermal carbonization and anaerobic digestion," Renewable Energy, Elsevier, vol. 160(C), pages 623-632.
    11. Montecchio, D. & Braguglia, C.M. & Gallipoli, A. & Gianico, A., 2017. "A model-based tool for reactor configuration of thermophilic biogas plants fed with Waste Activated Sludge," Renewable Energy, Elsevier, vol. 113(C), pages 411-419.
    12. Shamurad, Burhan & Gray, Neil & Petropoulos, Evangelos & Tabraiz, Shamas & Membere, Edward & Sallis, Paul, 2020. "Predicting the effects of integrating mineral wastes in anaerobic digestion of OFMSW using first-order and Gompertz models from biomethane potential assays," Renewable Energy, Elsevier, vol. 152(C), pages 308-319.
    13. Latifi, Pooria & Karrabi, Mohsen & Danesh, Shahnaz, 2019. "Anaerobic co-digestion of poultry slaughterhouse wastes with sewage sludge in batch-mode bioreactors (effect of inoculum-substrate ratio and total solids)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 288-296.
    14. Lee, Eun Seo & Park, Seon Yeong & Kim, Chang Gyun, 2023. "Feasibility test anaerobically enhancing methane yield under the injection of hydrogen and carbon dioxide," Renewable Energy, Elsevier, vol. 212(C), pages 761-768.
    15. Eljamal, Ramadan & Maamoun, Ibrahim & Bensaida, Khaoula & Yilmaz, Gulsum & Sugihara, Yuij & Eljamal, Osama, 2022. "A novel method to improve methane generation from waste sludge using iron nanoparticles coated with magnesium hydroxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    2. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    4. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    5. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    6. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    7. Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    9. Kerstin Nielsen & Christina-Luise Roß & Marieke Hoffmann & Andreas Muskolus & Frank Ellmer & Timo Kautz, 2020. "The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity," Agriculture, MDPI, vol. 10(6), pages 1-20, June.
    10. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    11. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    12. Mohammadpour, Hossein & Cord-Ruwisch, Ralf & Pivrikas, Almantas & Ho, Goen, 2022. "Simple energy-efficient electrochemically-driven CO2 scrubbing for biogas upgrading," Renewable Energy, Elsevier, vol. 195(C), pages 274-282.
    13. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    14. Mohammed Ali Musa & Syazwani Idrus & Che Man Hasfalina & Nik Norsyahariati Nik Daud, 2018. "Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate," IJERPH, MDPI, vol. 15(10), pages 1-19, October.
    15. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    16. Ornelas-Ferreira, B. & Lobato, L.C.S. & Colturato, L.F.D. & Torres, E.O. & Pombo, L.M. & Pujatti, F.J.P. & Araújo, J.C. & Chernicharo, C.A.L., 2020. "Strategies for energy recovery and gains associated with the implementation of a solid state batch methanization system for treating organic waste from the city of Rio de Janeiro - Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1976-1983.
    17. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
    19. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Chen, Wen-Lih & Currao, Gaetano & Li, Yueh-Heng & Kao, Chien-Chun, 2023. "Employing Taguchi method to optimize the performance of a microscale combined heat and power system with Stirling engine and thermophotovoltaic array," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:104:y:2017:i:c:p:50-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.