Anaerobic Co-Digestion of Brewers’ Spent Grain from Craft Beer and Cattle Manure for Biogas Production
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Magdalena Kapłan & Kamila Klimek & Serhiy Syrotyuk & Ryszard Konieczny & Bartłomiej Jura & Adam Smoliński & Jan Szymenderski & Krzysztof Budnik & Dorota Anders & Barbara Dybek & Agnieszka Karwacka & G, 2021. "Raw Biogas Desulphurization Using the Adsorption-Absorption Technique for a Pilot Production of Agricultural Biogas from Pig Slurry in Poland," Energies, MDPI, vol. 14(18), pages 1-22, September.
- Ware, Aidan & Power, Niamh, 2017. "Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions," Renewable Energy, Elsevier, vol. 104(C), pages 50-59.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.
- Guilherme Henrique da Silva & Natália dos Santos Renato & Alisson Carraro Borges & Marcio Arêdes Martins & Alberto José Delgado dos Reis & Marcelo Henrique Otenio, 2024. "Valorization and Bioremediation of Digestate from Anaerobic Co-Digestion of Giant Reed ( Arundo donax L.) and Cattle Wastewater Using Microalgae," Sustainability, MDPI, vol. 16(23), pages 1-20, November.
- Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.
- Huayong Zhang & Di An & Yudong Cao & Yonglan Tian & Jinxian He, 2021. "Modeling the Methane Production Kinetics of Anaerobic Co-Digestion of Agricultural Wastes Using Sigmoidal Functions," Energies, MDPI, vol. 14(2), pages 1-12, January.
- Shitophyta Lukhi Mulia & Arnita Arnita & Wulansari Hilda Dyah Ana, 2023. "Evaluation and modelling of biogas production from batch anaerobic digestion of corn stover with oxalic acid," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 69(3), pages 151-157.
- Héctor Alfredo López-Aguilar & Bryan Morales-Durán & David Quiroz-Cardoza & Antonino Pérez-Hernández, 2023. "Lag Phase in the Anaerobic Co-Digestion of Sargassum spp. and Organic Domestic Waste," Energies, MDPI, vol. 16(14), pages 1-15, July.
- Eljamal, Ramadan & Maamoun, Ibrahim & Bensaida, Khaoula & Yilmaz, Gulsum & Sugihara, Yuij & Eljamal, Osama, 2022. "A novel method to improve methane generation from waste sludge using iron nanoparticles coated with magnesium hydroxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Basinas, Panagiotis & Chamrádová, Kateřina & Rusín, Jiří & Kaldis, Sotiris P., 2024. "Anaerobic digestion performance and kinetics of biomass pretreated with various fungal strains utilizing exponential and sigmoidal equation models," Renewable Energy, Elsevier, vol. 235(C).
- Muñoz, P. & González-Menorca, C. & Sánchez-Vázquez, R. & Sanchez-Prieto, J. & Fraile Del Pozo, A., 2024. "Determining biomethane potential from animal-source industry wastes by anaerobic digestion: A case study from La rioja, Spain," Renewable Energy, Elsevier, vol. 235(C).
- Momoh, O.L.Y. & Ouki, S., 2018. "Development of a novel fractal-like kinetic model for elucidating the effect of particle size on the mechanism of hydrolysis and biogas yield from ligno-cellulosic biomass," Renewable Energy, Elsevier, vol. 118(C), pages 71-83.
- Latifi, Pooria & Karrabi, Mohsen & Danesh, Shahnaz, 2019. "Anaerobic co-digestion of poultry slaughterhouse wastes with sewage sludge in batch-mode bioreactors (effect of inoculum-substrate ratio and total solids)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 288-296.
- Montecchio, D. & Braguglia, C.M. & Gallipoli, A. & Gianico, A., 2017. "A model-based tool for reactor configuration of thermophilic biogas plants fed with Waste Activated Sludge," Renewable Energy, Elsevier, vol. 113(C), pages 411-419.
- Shamurad, Burhan & Gray, Neil & Petropoulos, Evangelos & Tabraiz, Shamas & Membere, Edward & Sallis, Paul, 2020. "Predicting the effects of integrating mineral wastes in anaerobic digestion of OFMSW using first-order and Gompertz models from biomethane potential assays," Renewable Energy, Elsevier, vol. 152(C), pages 308-319.
- Meraz, M. & Castilla, P. & Vernon-Carter, E.J. & Alvarez-Ramirez, J., 2024. "Biogas production modeling: Developing a logistic equation satisfying the zero initial condition," Renewable Energy, Elsevier, vol. 237(PC).
- Marin-Batista, J.D. & Villamil, J.A. & Qaramaleki, S.V. & Coronella, C.J. & Mohedano, A.F. & Rubia, M.A. de la, 2020. "Energy valorization of cow manure by hydrothermal carbonization and anaerobic digestion," Renewable Energy, Elsevier, vol. 160(C), pages 623-632.
- Lee, Eun Seo & Park, Seon Yeong & Kim, Chang Gyun, 2023. "Feasibility test anaerobically enhancing methane yield under the injection of hydrogen and carbon dioxide," Renewable Energy, Elsevier, vol. 212(C), pages 761-768.
- Wałowski, Grzegorz, 2024. "Pig slurry - A polydisperse substrate necessary for the biogasification of a lignite bed," Energy, Elsevier, vol. 298(C).
- Emebu, Samuel & Pecha, Jiří & Janáčová, Dagmar, 2022. "Review on anaerobic digestion models: Model classification & elaboration of process phenomena," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Kainthola, Jyoti & Shariq, Mohd & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2019. "Electrohydrolysis pretreatment methods to enhance the methane production from anaerobic digestion of rice straw using graphite electrode," Renewable Energy, Elsevier, vol. 142(C), pages 1-10.
- Liew, Zhen Kang & Chan, Yi Jing & Ho, Zheng Theng & Yip, Yew Hong & Teng, Ming Chern & Ameer Abbas bin, Ameer Illham Tuah & Chong, Siewhui & Show, Pau Loke & Chew, Chien Lye, 2021. "Biogas production enhancement by co-digestion of empty fruit bunch (EFB) with palm oil mill effluent (POME): Performance and kinetic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 766-777.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jworld:v:6:y:2025:i:3:p:118-:d:1739002. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jworld/v6y2025i3p118-d1739002.html