IDEAS home Printed from
   My bibliography  Save this article

The cost benefit analysis of implementing photovoltaic solar system in the state of Kuwait


  • Ramadhan, Mohammad
  • Naseeb, Adel


In addition to the high financial cost of energy resources required to meet the rising demand for electricity consumption in Kuwait, the negative environmental impact of fossil fuel is increasing. Hence, the objective of this paper is to determine the economic feasibility and viability of implementing PV solar energy in the State of Kuwait. It was found that the positive characteristics of solar radiation in Kuwait play a critical role in enhancing the feasibility of implementing solar systems. Under the present price of 5$/W and 15% efficiency, the LCOE of a 1 MW station is estimated to be around $0.20/kWh. This LCOE can be feasible only when the cost of oil is around 100$/barrel. The Cost Benefit Analysis showed that when the value of saved energy resources used in producing traditional electricity, and the cost of lowering CO2 emissions are accounted for, the true economic cost of LCOE of a PV system will decline significantly. The preliminary economic analysis recommends the implementation of PV technology in Kuwait.

Suggested Citation

  • Ramadhan, Mohammad & Naseeb, Adel, 2011. "The cost benefit analysis of implementing photovoltaic solar system in the state of Kuwait," Renewable Energy, Elsevier, vol. 36(4), pages 1272-1276.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:4:p:1272-1276
    DOI: 10.1016/j.renene.2010.10.004

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Al-Enezi, Mohammed & Burney, Nadeem A. & Hamada, Salwa & Awadh, Wafa, 2007. "Peakload electricity demand in Kuwait," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 60(3), pages 273-291.
    2. Kumar, Shiv & Tiwari, G.N., 2009. "Life cycle cost analysis of single slope hybrid (PV/T) active solar still," Applied Energy, Elsevier, vol. 86(10), pages 1995-2004, October.
    3. Dincer, Ibrahim, 1999. "Environmental impacts of energy," Energy Policy, Elsevier, vol. 27(14), pages 845-854, December.
    4. Georgopoulou, E. & Lalas, D. & Papagiannakis, L., 1997. "A multicriteria decision aid approach for energy planning problems: The case of renewable energy option," European Journal of Operational Research, Elsevier, vol. 103(1), pages 38-54, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:rensus:v:77:y:2017:i:c:p:617-635 is not listed on IDEAS
    2. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Sadeghi, Zeinolabedin, 2017. "Solar photovoltaic power plants in five top oil-producing countries in Middle East: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1271-1280.
    3. Wang, Yu & Zhou, Sheng & Huo, Hong, 2014. "Cost and CO2 reductions of solar photovoltaic power generation in China: Perspectives for 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 370-380.
    4. repec:eee:rensus:v:74:y:2017:i:c:p:1379-1393 is not listed on IDEAS
    5. repec:eee:rensus:v:81:y:2018:i:p2:p:2002-2010 is not listed on IDEAS
    6. repec:gam:jeners:v:11:y:2018:i:2:p:372-:d:130280 is not listed on IDEAS
    7. Zhang, Da & Tang, Songlin & Lin, Bao & Liu, Zhen & Zhang, Xiliang & Zhang, Danwei, 2012. "Co-benefit of polycrystalline large-scale photovoltaic power in China," Energy, Elsevier, vol. 41(1), pages 436-442.
    8. repec:eee:rensus:v:76:y:2017:i:c:p:1122-1133 is not listed on IDEAS
    9. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    10. Willis, Ken & Scarpa, Riccardo & Gilroy, Rose & Hamza, Neveen, 2011. "Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption," Energy Policy, Elsevier, vol. 39(10), pages 6021-6029, October.
    11. repec:eee:energy:v:164:y:2018:i:c:p:1311-1325 is not listed on IDEAS
    12. Zandi, M. & Bahrami, M. & Eslami, S. & Gavagsaz-Ghoachani, R. & Payman, A. & Phattanasak, M. & Nahid-Mobarakeh, B. & Pierfederici, S., 2017. "Evaluation and comparison of economic policies to increase distributed generation capacity in the Iranian household consumption sector using photovoltaic systems and RETScreen software," Renewable Energy, Elsevier, vol. 107(C), pages 215-222.
    13. Nižetić, S. & Duić, N. & Papadopulos, A.M. & Tina, G.M. & Grubišić-Čabo, F., 2015. "Energy efficiency evaluation of a hybrid energy system for building applications in a Mediterranean climate and its feasibility aspect," Energy, Elsevier, vol. 90(P1), pages 1171-1179.
    14. Sabo, Mahmoud Lurwan & Mariun, Norman & Hizam, Hashim & Mohd Radzi, Mohd Amran & Zakaria, Azmi, 2017. "Spatial matching of large-scale grid-connected photovoltaic power generation with utility demand in Peninsular Malaysia," Applied Energy, Elsevier, vol. 191(C), pages 663-688.
    15. Sivaraman, Deepak & Moore, Michael R., 2012. "Economic performance of grid-connected photovoltaics in California and Texas (United States): The influence of renewable energy and climate policies," Energy Policy, Elsevier, vol. 49(C), pages 274-287.
    16. Sun, Yan-wei & Hof, Angela & Wang, Run & Liu, Jian & Lin, Yan-jie & Yang, De-wei, 2013. "GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province," Energy Policy, Elsevier, vol. 58(C), pages 248-259.
    17. repec:eee:renene:v:112:y:2017:i:c:p:466-473 is not listed on IDEAS
    18. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    19. Ghaith, Ahmad & Epplin, Francis & Frazier, R. Scott, 2016. "Cost of Oklahoma Grid-tied Solar Panel and Wind Turbine Systems for a Representative Household," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229820, Southern Agricultural Economics Association.
    20. Bobinaite, Viktorija & Tarvydas, Dalius, 2014. "Financing instruments and channels for the increasing production and consumption of renewable energy: Lithuanian case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 259-276.
    21. repec:eee:rensus:v:76:y:2017:i:c:p:555-576 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:4:p:1272-1276. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.