IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i12p2761-2766.html
   My bibliography  Save this article

Capacity factor prediction and planning in the wind power generation industry

Author

Listed:
  • Gurgur, Cigdem Z.
  • Jones, Michael

Abstract

The common practice to calculate wind generation capacity values relies more on heuristic approximations than true system estimations. In this paper we proposed a more accurate method. In the first part of our analysis, a Monte Carlo simulation was created based on Markov chains to provide an independent estimate of the true behavior of wind farm capacity value as a function of system penetration. With this curve as a baseline, a technique for using beta distributions to model the input variables was adopted. A final step to increase accuracy involved the use of numerical convolution within the program to eliminate summation estimates.

Suggested Citation

  • Gurgur, Cigdem Z. & Jones, Michael, 2010. "Capacity factor prediction and planning in the wind power generation industry," Renewable Energy, Elsevier, vol. 35(12), pages 2761-2766.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2761-2766
    DOI: 10.1016/j.renene.2010.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110001941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Voorspools, Kris R. & D'haeseleer, William D., 2006. "An analytical formula for the capacity credit of wind power," Renewable Energy, Elsevier, vol. 31(1), pages 45-54.
    2. Voorspools, Kris R. & D'haeseleer, William D., 2007. "Critical evaluation of methods for wind-power appraisal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 78-97, January.
    3. Kahn, Edward P., 2004. "Effective Load Carrying Capability of Wind Generation: Initial Results with Public Data," The Electricity Journal, Elsevier, vol. 17(10), pages 85-95, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnold, Uwe & Yildiz, Özgür, 2015. "Economic risk analysis of decentralized renewable energy infrastructures – A Monte Carlo Simulation approach," Renewable Energy, Elsevier, vol. 77(C), pages 227-239.
    2. Mabel, M. Carolin & Raj, R. Edwin & Fernandez, E., 2011. "Analysis on reliability aspects of wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1210-1216, February.
    3. Fan-Yun Pai & Tsu-Ming Yeh & Yung-Hsien Hung, 2015. "Analysis on Accuracy of Bias, Linearity and Stability of Measurement System in Ball screw Processes by Simulation," Sustainability, MDPI, vol. 7(11), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haeseldonckx, Dries & D'haeseleer, William, 2008. "The environmental impact of decentralised generation in an overall system context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 437-454, February.
    2. Mabel, M. Carolin & Raj, R. Edwin & Fernandez, E., 2011. "Analysis on reliability aspects of wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1210-1216, February.
    3. Wilton, Edgar & Delarue, Erik & D’haeseleer, William & van Sark, Wilfried, 2014. "Reconsidering the capacity credit of wind power: Application of cumulative prospect theory," Renewable Energy, Elsevier, vol. 68(C), pages 752-760.
    4. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    5. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    6. Leijon, Mats & Skoglund, Annika & Waters, Rafael & Rehn, Alf & Lindahl, Marcus, 2010. "On the physics of power, energy and economics of renewable electric energy sources – Part I," Renewable Energy, Elsevier, vol. 35(8), pages 1729-1734.
    7. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    8. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.
    9. Jakob Peter & Johannes Wagner, 2018. "Optimal Allocation of Variable Renewable Energy Considering Contributions to Security of Supply," EWI Working Papers 2018-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    10. Ajayi, Oluseyi O, 2013. "Sustainable energy development and environmental protection: Implication for selected states in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 532-539.
    11. Mabel, M. Carolin & Raj, R. Edwin & Fernandez, E., 2010. "Adequacy evaluation of wind power generation systems," Energy, Elsevier, vol. 35(12), pages 5217-5222.
    12. Coker, Phil & Barlow, Janet & Cockerill, Tim & Shipworth, David, 2013. "Measuring significant variability characteristics: An assessment of three UK renewables," Renewable Energy, Elsevier, vol. 53(C), pages 111-120.
    13. Keller, Victor & English, Jeffrey & Fernandez, Julian & Wade, Cameron & Fowler, McKenzie & Scholtysik, Sven & Palmer-Wilson, Kevin & Donald, James & Robertson, Bryson & Wild, Peter & Crawford, Curran , 2019. "Electrification of road transportation with utility controlled charging: A case study for British Columbia with a 93% renewable electricity target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Skoglund, Annika & Leijon, Mats & Rehn, Alf & Lindahl, Marcus & Waters, Rafael, 2010. "On the physics of power, energy and economics of renewable electric energy sources - Part II," Renewable Energy, Elsevier, vol. 35(8), pages 1735-1740.
    15. George, Mel & Banerjee, Rangan, 2009. "Analysis of impacts of wind integration in the Tamil Nadu grid," Energy Policy, Elsevier, vol. 37(9), pages 3693-3700, September.
    16. Chen, Tao & Pipattanasomporn, Manisa & Rahman, Imran & Jing, Zejia & Rahman, Saifur, 2020. "MATPLAN: A probability-based planning tool for cost-effective grid integration of renewable energy," Renewable Energy, Elsevier, vol. 156(C), pages 1089-1099.
    17. Vassilis Stavrakas & Nikos Kleanthis & Alexandros Flamos, 2020. "An Ex-Post Assessment of RES-E Support in Greece by Investigating the Monetary Flows and the Causal Relationships in the Electricity Market," Energies, MDPI, vol. 13(17), pages 1-29, September.
    18. Nguyen, Christy & Ma, Chunbo & Hailu, Atakelty & Chalak, Morteza, 2016. "Factors influencing calculation of capacity value of wind power: A case study of the Australian National Electricity Market (NEM)," Renewable Energy, Elsevier, vol. 90(C), pages 319-328.
    19. Cuervo, Felipe Isaza & Botero, Sergio Botero, 2016. "Wind power reliability valuation in a Hydro-Dominated power market: The Colombian case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1359-1372.
    20. Hawkes, A.D. & Leach, M.A., 2008. "The capacity credit of micro-combined heat and power," Energy Policy, Elsevier, vol. 36(4), pages 1457-1469, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2761-2766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.