IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i2p369-373.html
   My bibliography  Save this article

Assessment of centralized grid connected wind power cost in coastal area of Pakistan

Author

Listed:
  • Harijan, Khanji
  • Uqaili, Mohammad A.
  • Memon, Mujeebuddin
  • Mirza, Umar K.

Abstract

This work presents an assessment of per unit cost of electricity generated from 15MW wind farm at 40 locations in the coastal areas of Pakistan using the method of net present value analysis. The Nordex N43/600 wind turbine has been selected and used as reference wind turbine. Wind duration curves were developed and utilized to calculate per unit cost of electricity generated from chosen wind turbine. In Sindh province, the minimum cost of electricity generated was found to be 4.2 ¢/kWh at Jamshoro, while the corresponding maximum was 7.4 ¢/kWh at Kadhan site. In Balochistan, the minimum cost of electricity generated was found to be 6.3 ¢/kWh at Aghore, while the corresponding maximum was 21.0 ¢/kWh at Mand site. The study concludes that at most of the locations especially in Sindh province, wind power is competitive to conventional grid connected thermal power even without considering the externalities.

Suggested Citation

  • Harijan, Khanji & Uqaili, Mohammad A. & Memon, Mujeebuddin & Mirza, Umar K., 2009. "Assessment of centralized grid connected wind power cost in coastal area of Pakistan," Renewable Energy, Elsevier, vol. 34(2), pages 369-373.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:2:p:369-373
    DOI: 10.1016/j.renene.2008.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108001997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirza, Umar K. & Ahmad, Nasir & Majeed, Tariq & Harijan, Khanji, 2007. "Wind energy development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2179-2190, December.
    2. Rehman, S & Halawani, T.O & Mohandes, M, 2003. "Wind power cost assessment at twenty locations in the kingdom of Saudi Arabia," Renewable Energy, Elsevier, vol. 28(4), pages 573-583.
    3. Bhuiyan, M.M.H & Asgar, M.Ali & Mazumder, R.K & Hussain, M, 2000. "Economic evaluation of a stand-alone residential photovoltaic power system in Bangladesh," Renewable Energy, Elsevier, vol. 21(3), pages 403-410.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2019. "Low-quality or high-quality coal? Household energy choice in rural Beijing," Energy Economics, Elsevier, vol. 78(C), pages 81-90.
    2. Watts, David & Durán, Pablo & Flores, Yarela, 2017. "How does El Niño Southern Oscillation impact the wind resource in Chile? A techno-economical assessment of the influence of El Niño and La Niña on the wind power," Renewable Energy, Elsevier, vol. 103(C), pages 128-142.
    3. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    4. Harijan, Khanji & Uqaili, Mohammad A. & Memon, Mujeebuddin & Mirza, Umar K., 2011. "Forecasting the diffusion of wind power in Pakistan," Energy, Elsevier, vol. 36(10), pages 6068-6073.
    5. Almansoori, Ali & Betancourt-Torcat, Alberto, 2015. "Design optimization model for the integration of renewable and nuclear energy in the United Arab Emirates’ power system," Applied Energy, Elsevier, vol. 148(C), pages 234-251.
    6. Amanullah Mengal & Katsuichiro Goda & Muhammad Ashraf & Ghulam Murtaza, 2021. "Social vulnerability to seismic-tsunami hazards in district Gwadar, Balochistan, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1159-1181, August.
    7. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2013. "Greener energy: Issues and challenges for Pakistan—wind power prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 519-538.
    8. Arslan, Oguz, 2010. "Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey," Energy, Elsevier, vol. 35(1), pages 120-131.
    9. Farooqui, Suhail Zaki, 2014. "Prospects of renewables penetration in the energy mix of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 693-700.
    10. Fueyo, Norberto & Sanz, Yosune & Rodrigues, Marcos & Montañés, Carlos & Dopazo, César, 2011. "The use of cost-generation curves for the analysis of wind electricity costs in Spain," Applied Energy, Elsevier, vol. 88(3), pages 733-740, March.
    11. Nansheng Pang & Mengfan Nan & Qichen Meng & Siyang Zhao, 2021. "Selection of Wind Turbine Based on Fuzzy Analytic Network Process: A Case Study in China," Sustainability, MDPI, vol. 13(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    2. Okou, R. & Sebitosi, A.B. & Pillay, P., 2011. "Flywheel rotor manufacture for rural energy storage in sub-Saharan Africa," Energy, Elsevier, vol. 36(10), pages 6138-6145.
    3. Ullah, Irfan & Chaudhry, Qamar-uz-Zaman & Chipperfield, Andrew J., 2010. "An evaluation of wind energy potential at Kati Bandar, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 856-861, February.
    4. Rafique, M. Mujahid & Rehman, S., 2017. "National energy scenario of Pakistan – Current status, future alternatives, and institutional infrastructure: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 156-167.
    5. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    6. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    7. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    8. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    9. K Hossain, A & Badr, O, 2007. "Prospects of renewable energy utilisation for electricity generation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1617-1649, October.
    10. Halder, P.K., 2016. "Potential and economic feasibility of solar home systems implementation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 568-576.
    11. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    12. Dong, Yunxuan & Wang, Jing & Xiao, Ling & Fu, Tonglin, 2021. "Short-term wind speed time series forecasting based on a hybrid method with multiple objective optimization for non-convex target," Energy, Elsevier, vol. 215(PB).
    13. Naqi Shah, Sadia & Qayyum, Abdul, 2016. "Analyse Risk-Return Paradox: Evidence from Electricity Sector of Pakistan," MPRA Paper 68783, University Library of Munich, Germany.
    14. Iskander Tlili, 2015. "Renewable energy in Saudi Arabia: current status and future potentials," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 859-886, August.
    15. Ayman M. Mansour & Abdulaziz Almutairi & Saeed Alyami & Mohammad A. Obeidat & Dhafer Almkahles & Jagabar Sathik, 2021. "A Unique Unified Wind Speed Approach to Decision-Making for Dispersed Locations," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    16. Mansouri, Noura Y. & Crookes, Roy J. & Korakianitis, Theodosios, 2013. "A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics," Energy Policy, Elsevier, vol. 63(C), pages 681-695.
    17. Sher, Hadeed Ahmed & Murtaza, Ali F & Addoweesh, Khaled E & Chiaberge, Marcello, 2015. "Pakistan’s progress in solar PV based energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 213-217.
    18. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    19. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    20. Nguyen, Khanh Q., 2007. "Alternatives to grid extension for rural electrification: Decentralized renewable energy technologies in Vietnam," Energy Policy, Elsevier, vol. 35(4), pages 2579-2589, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:2:p:369-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.