IDEAS home Printed from
   My bibliography  Save this article

Opportunities for hydrogen production in connection with wind power in weak grids


  • Korpås, Magnus
  • Greiner, Christopher J.


This paper gives an overview of the opportunities that exist for combining wind power and hydrogen (H2) production in weak grids. It is described how H2 storage can be applied in both isolated and grid-connected systems, and how the produced H2 can be utilized for stationary energy supply and/or as a fuel for transportation. The paper discusses the benefits and limitations of the different H2 storage applications, and presents a logistic simulation model for performance evaluation of wind-H2 plants. A case study simulating the use of excess wind power in a weak distribution grid to produce H2 for vehicles has been presented. It is shown that the penetration of wind power can be significantly increased by introducing electrolytic H2 production as a controllable load. The results also indicate that there are large benefits of using the grid as backup for H2 production in periods with low wind speed, regarding the H2 storage sizing and the electrolyser operating conditions.

Suggested Citation

  • Korpås, Magnus & Greiner, Christopher J., 2008. "Opportunities for hydrogen production in connection with wind power in weak grids," Renewable Energy, Elsevier, vol. 33(6), pages 1199-1208.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:6:p:1199-1208
    DOI: 10.1016/j.renene.2007.06.010

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Santarelli, M. & Pellegrino, D., 2005. "Mathematical optimization of a RES-H2 plant using a black box algorithm," Renewable Energy, Elsevier, vol. 30(4), pages 493-510.
    2. Agbossou, Kodjo & Kolhe, Mohan Lal & Hamelin, Jean & Bernier, Étienne & Bose, Tapan K., 2004. "Electrolytic hydrogen based renewable energy system with oxygen recovery and re-utilization," Renewable Energy, Elsevier, vol. 29(8), pages 1305-1318.
    3. Lund, Henrik & Duić, Neven & Krajac˘ić, Goran & Graça Carvalho, Maria da, 2007. "Two energy system analysis models: A comparison of methodologies and results," Energy, Elsevier, vol. 32(6), pages 948-954.
    4. Ntziachristos, Leonidas & Kouridis, Chariton & Samaras, Zissis & Pattas, Konstantinos, 2005. "A wind-power fuel-cell hybrid system study on the non-interconnected Aegean islands grid," Renewable Energy, Elsevier, vol. 30(10), pages 1471-1487.
    5. Lund, Henrik & Münster, Ebbe, 2006. "Integrated transportation and energy sector CO2 emission control strategies," Transport Policy, Elsevier, vol. 13(5), pages 426-433, September.
    6. Kaldellis, J.K. & Kavadias, K.A., 2007. "Cost-benefit analysis of remote hybrid wind-diesel power stations: Case study Aegean Sea islands," Energy Policy, Elsevier, vol. 35(3), pages 1525-1538, March.
    7. Marshall, A. & Børresen, B. & Hagen, G. & Tsypkin, M. & Tunold, R., 2007. "Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis," Energy, Elsevier, vol. 32(4), pages 431-436.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Dougherty, William & Kartha, Sivan & Rajan, Chella & Lazarus, Michael & Bailie, Alison & Runkle, Benjamin & Fencl, Amanda, 2009. "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA," Energy Policy, Elsevier, vol. 37(1), pages 56-67, January.
    2. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    3. G. García Clúa, José & Mantz, Ricardo J. & De Battista, Hernán, 2011. "Evaluation of hydrogen production capabilities of a grid-assisted wind-H2 system," Applied Energy, Elsevier, vol. 88(5), pages 1857-1863, May.
    4. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, Open Access Journal, vol. 13(18), pages 1-1, September.
    5. Green, Richard & Hu, Helen & Vasilakos, Nicholas, 2011. "Turning the wind into hydrogen: The long-run impact on electricity prices and generating capacity," Energy Policy, Elsevier, vol. 39(7), pages 3992-3998, July.
    6. Hasan, Nor Shahida & Hassan, Mohammad Yusri & Majid, Md Shah & Rahman, Hasimah Abdul, 2013. "Review of storage schemes for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 237-247.
    7. Joselin Herbert, G.M. & Iniyan, S. & Amutha, D., 2014. "A review of technical issues on the development of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 619-641.
    8. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    9. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    10. Sayah, Anita K. & Sayah, Athena K., 2011. "Wind-hydrogen utilization for methanol production: An economy assessment in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3570-3574.
    11. Rahmanifard, Hamid & Plaksina, Tatyana, 2019. "Hybrid compressed air energy storage, wind and geothermal energy systems in Alberta: Feasibility simulation and economic assessment," Renewable Energy, Elsevier, vol. 143(C), pages 453-470.
    12. Jafari, Mehdi & Korpås, Magnus & Botterud, Audun, 2020. "Power system decarbonization: Impacts of energy storage duration and interannual renewables variability," Renewable Energy, Elsevier, vol. 156(C), pages 1171-1185.
    13. Suyang Zhou & Di He & Zhiyang Zhang & Zhi Wu & Wei Gu & Junjie Li & Zhe Li & Gaoxiang Wu, 2019. "A Data-Driven Scheduling Approach for Hydrogen Penetrated Energy System Using LSTM Network," Sustainability, MDPI, Open Access Journal, vol. 11(23), pages 1-1, November.
    14. Genç, Mustafa Serdar & Çelik, Muhammet & Karasu, İlyas, 2012. "A review on wind energy and wind–hydrogen production in Turkey: A case study of hydrogen production via electrolysis system supplied by wind energy conversion system in Central Anatolian Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6631-6646.
    15. Nocera, Silvio & Cavallaro, Federico, 2016. "The competitiveness of alternative transport fuels for CO2 emissions," Transport Policy, Elsevier, vol. 50(C), pages 1-14.
    16. Krajacic, Goran & Duic, Neven & Tsikalakis, Antonis & Zoulias, Manos & Caralis, George & Panteri, Eirini & Carvalho, Maria da Graça, 2011. "Feed-in tariffs for promotion of energy storage technologies," Energy Policy, Elsevier, vol. 39(3), pages 1410-1425, March.
    17. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Mitigation of wind power intermittency: Storage technology approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 447-456.
    18. Beccali, M. & Brunone, S. & Finocchiaro, P. & Galletto, J.M., 2013. "Method for size optimisation of large wind–hydrogen systems with high penetration on power grids," Applied Energy, Elsevier, vol. 102(C), pages 534-544.
    19. Mahto, Tarkeshwar & Mukherjee, V., 2015. "Energy storage systems for mitigating the variability of isolated hybrid power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1564-1577.
    20. Azcárate, Cristina & Blanco, Rosa & Mallor, Fermín & Garde, Raquel & Aguado, Mónica, 2012. "Peaking strategies for the management of wind-H2 energy systems," Renewable Energy, Elsevier, vol. 47(C), pages 103-111.
    21. Carton, J.G. & Olabi, A.G., 2010. "Wind/hydrogen hybrid systems: Opportunity for Ireland’s wind resource to provide consistent sustainable energy supply," Energy, Elsevier, vol. 35(12), pages 4536-4544.
    22. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:6:p:1199-1208. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.