IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v246y2025ics0960148125005142.html
   My bibliography  Save this article

A comparative study on optimizing multi-generation systems for zero energy buildings in the USA, South Korea, Canada, and England using machine learning and response surface methodology

Author

Listed:
  • Assareh, Ehsanolah
  • Abdullah, Ali Jawad
  • Nhien, Le Cao
  • Ahmadinejad, Mehrdad
  • Omidi, Arash
  • Lee, Moonyong

Abstract

The study aims to meet building energy demands by implementing diverse renewable energy systems to minimize pollution emissions. A novel multi-energy production system combining Rankine and Kalina organic cycles is proposed to address the energy requirements of three office buildings, a school, and a hospital. Using advanced optimization techniques, including machine learning-based approaches, the building designs are tailored to deliver efficient energy solutions. This research evaluates the system's performance across Liverpool, Vancouver, New York, and Busan, reflecting a range of climatic conditions. The optimized system achieves an exergy efficiency of 31.72 % and an annual cost of $306.33 per hour. It generates 100,740 kWh of electricity, 963,292 kWh of heating, and 123,252 kWh of cooling, effectively meeting energy needs year-round. Additionally, the system's energy storage capacity is analyzed for supplementary applications, offering a comprehensive approach to sustainable energy supply. By integrating renewable sources, optimizing building designs, and accounting for diverse climates, the proposed system demonstrates significant potential for enhancing energy efficiency and sustainability across varied building types.

Suggested Citation

  • Assareh, Ehsanolah & Abdullah, Ali Jawad & Nhien, Le Cao & Ahmadinejad, Mehrdad & Omidi, Arash & Lee, Moonyong, 2025. "A comparative study on optimizing multi-generation systems for zero energy buildings in the USA, South Korea, Canada, and England using machine learning and response surface methodology," Renewable Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005142
    DOI: 10.1016/j.renene.2025.122852
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125005142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shukun & Zhang, Lu & Liu, Chao & Liu, Zuming & Lan, Song & Li, Qibin & Wang, Xiaonan, 2021. "Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery," Energy, Elsevier, vol. 231(C).
    2. Dezhdar, Ali & Assareh, Ehsanolah & Agarwal, Neha & bedakhanian, Ali & Keykhah, Sajjad & fard, Ghazaleh yeganeh & zadsar, Narjes & Aghajari, Mona & Lee, Moonyong, 2023. "Transient optimization of a new solar-wind multi-generation system for hydrogen production, desalination, clean electricity, heating, cooling, and energy storage using TRNSYS," Renewable Energy, Elsevier, vol. 208(C), pages 512-537.
    3. Pesola, Aki, 2023. "Cost-optimization model to design and operate hybrid heating systems – Case study of district heating system with decentralized heat pumps in Finland," Energy, Elsevier, vol. 281(C).
    4. Braas, Hagen & Jordan, Ulrike & Best, Isabelle & Orozaliev, Janybek & Vajen, Klaus, 2020. "District heating load profiles for domestic hot water preparation with realistic simultaneity using DHWcalc and TRNSYS," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    2. Zhou, Xiao & Abed, Azher M. & Abdullaev, Sherzod & Lei, Guoliang & He, Li & Li, Xuetao & Elmasry, Yasser & Mahariq, Ibrahim, 2024. "Data-driven study/optimization of a solar power and cooling generation system in a transient operation mode and proposing a novel multi-turbine modification concept to reduce the sun's intermittent ef," Energy, Elsevier, vol. 309(C).
    3. Qian, Xiaoyan & Dai, Jie & Jiang, Weimin & Cai, Helen & Ye, Xixi & Shahab Vafadaran, Mohammad, 2024. "Economic viability and investment returns of innovative geothermal tri-generation systems: A comparative study," Renewable Energy, Elsevier, vol. 226(C).
    4. Xuan, Zhiwei & Ge, Minghui & Zhao, Chenyang & Li, Yanzhe & Wang, Shixue & Zhao, Yulong, 2024. "Effect of nonuniform solar radiation on the performance of solar thermoelectric generators," Energy, Elsevier, vol. 290(C).
    5. Baxter L. M. Williams & R. J. Hooper & Daniel Gnoth & J. G. Chase, 2025. "Residential Electricity Demand Modelling: Validation of a Behavioural Agent-Based Approach," Energies, MDPI, vol. 18(6), pages 1-22, March.
    6. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    7. Michael J. Ritchie & Jacobus A.A. Engelbrecht & Marthinus J. Booysen, 2021. "Practically-Achievable Energy Savings with the Optimal Control of Stratified Water Heaters with Predicted Usage," Energies, MDPI, vol. 14(7), pages 1-23, April.
    8. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Maltais, Louis-Gabriel & Gosselin, Louis, 2021. "Predictability analysis of domestic hot water consumption with neural networks: From single units to large residential buildings," Energy, Elsevier, vol. 229(C).
    10. Hall, Rebecca & Kenway, Steven & O'Brien, Katherine & Memon, Fayyaz, 2025. "Quantification of residential water-related energy needs cohesion, validation and global representation to unlock efficiency gains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    11. Łukasz Amanowicz, 2021. "Peak Power of Heat Source for Domestic Hot Water Preparation (DHW) for Residential Estate in Poland as a Representative Case Study for the Climate of Central Europe," Energies, MDPI, vol. 14(23), pages 1-15, December.
    12. Stanislav Chicherin & Andrey Zhuikov & Lyazzat Junussova, 2023. "Factors Affecting Indoor Temperature in the Case of District Heating," Sustainability, MDPI, vol. 15(21), pages 1-16, November.
    13. Abdulrazzak Akroot & Mohamed Almaktar & Feras Alasali, 2024. "The Integration of Renewable Energy into a Fossil Fuel Power Generation System in Oil-Producing Countries: A Case Study of an Integrated Solar Combined Cycle at the Sarir Power Plant," Sustainability, MDPI, vol. 16(11), pages 1-29, June.
    14. Azizi, Saeid & Shakibi, Hamid & Shokri, Afshar & Chitsaz, Ata & Yari, Mortaza, 2023. "Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system," Applied Energy, Elsevier, vol. 332(C).
    15. Mooyoung Yoo, 2024. "Development of Energy Efficient Domestic Hot Water Loop System Integrated with a Chilled Water Plant in Commercial Building," Sustainability, MDPI, vol. 17(1), pages 1-16, December.
    16. Gyula Richárd Kiss & Miklós Horváth & Zoltán Szánthó, 2025. "MATLAB Simulink-Based Modelling and Performance Analysis of District Heating Substations for Renewable Energy Integration," Energies, MDPI, vol. 18(9), pages 1-24, May.
    17. Kalina, Jacek & Pohl, Wiktoria, 2024. "Technical and economic analysis of a multicarrier building energy hub concept with heating loads at different temperature levels," Energy, Elsevier, vol. 288(C).
    18. Toffanin, Riccardo & Curti, Vinicio & Barbato, Maurizio C., 2021. "Impact of Legionella regulation on a 4th generation district heating substation energy use and cost: the case of a Swiss single-family household," Energy, Elsevier, vol. 228(C).
    19. Michele Tunzi & Matthieu Ruysschaert & Svend Svendsen & Kevin Michael Smith, 2020. "Double Loop Network for Combined Heating and Cooling in Low Heat Density Areas," Energies, MDPI, vol. 13(22), pages 1-24, November.
    20. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.