IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2370-d1650143.html
   My bibliography  Save this article

MATLAB Simulink-Based Modelling and Performance Analysis of District Heating Substations for Renewable Energy Integration

Author

Listed:
  • Gyula Richárd Kiss

    (Department of Building Services and Process Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Hungary)

  • Miklós Horváth

    (Department of Building Services and Process Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Hungary)

  • Zoltán Szánthó

    (Department of Building Services and Process Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Hungary)

Abstract

Sustainable and energy-efficient district heating systems are essential for reducing carbon emissions and improving building energy performance. This study presents a MATLAB (Version: 2024b) Simulink-based modelling and performance analysis approach for evaluating district heating substations, focusing on lowering the primary return temperature to support renewable energy integration. The analysis investigates the role of heat exchanger configurations and the effects of varying mass flow rates and domestic hot water (DHW) consumption. Three substation designs are examined. Version 1 (v1) includes three heat exchangers with a single DHW storage charge and circulation pump; version 2 (v2) has two heat exchangers with a similar pump arrangement; and version 3 (v3) features three heat exchangers with separate DHW circulation and storage charge pumps. Based on the simulation results, the v1 configuration demonstrated the most favourable performance in terms of primary return temperature reduction. The v2 configuration resulted in the highest return temperatures among the three, whereas the thermal performance of v3 was intermediate, falling between the outcomes of v1 and v2. However, the v3 configuration requires further optimization to enhance its primary return temperature reduction performance and achieve more effective functioning under varying operating conditions. The comparison highlights that optimised district heating substation design can reduce return temperatures. Lower return temperatures improve system efficiency and enable greater integration of renewable energy sources.

Suggested Citation

  • Gyula Richárd Kiss & Miklós Horváth & Zoltán Szánthó, 2025. "MATLAB Simulink-Based Modelling and Performance Analysis of District Heating Substations for Renewable Energy Integration," Energies, MDPI, vol. 18(9), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2370-:d:1650143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Xiaochen & Li, Hongwei & Svendsen, Svend, 2016. "Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating," Energy, Elsevier, vol. 109(C), pages 248-259.
    2. Anna Vannahme & Jonas Busch & Mathias Ehrenwirth & Tobias Schrag, 2023. "Experimental Study of District Heating Substations in a Hardware-in-the-Loop Test Rig," Resources, MDPI, vol. 12(4), pages 1-13, March.
    3. Gianni Martinazzoli & Daniele Pasinelli & Adriano Maria Lezzi & Mariagrazia Pilotelli, 2023. "Design of a 5th Generation District Heating Substation Prototype for a Real Case Study," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    4. Braas, Hagen & Jordan, Ulrike & Best, Isabelle & Orozaliev, Janybek & Vajen, Klaus, 2020. "District heating load profiles for domestic hot water preparation with realistic simultaneity using DHWcalc and TRNSYS," Energy, Elsevier, vol. 201(C).
    5. Thorsen, Jan Eric & Gudmundsson, Oddgeir & Tunzi, Michele & Esbensen, Torben, 2024. "Aftercooling concept: An innovative substation ready for 4th generation district heating networks," Energy, Elsevier, vol. 293(C).
    6. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Toffanin, Riccardo & Curti, Vinicio & Barbato, Maurizio C., 2021. "Impact of Legionella regulation on a 4th generation district heating substation energy use and cost: the case of a Swiss single-family household," Energy, Elsevier, vol. 228(C).
    3. Michele Tunzi & Matthieu Ruysschaert & Svend Svendsen & Kevin Michael Smith, 2020. "Double Loop Network for Combined Heating and Cooling in Low Heat Density Areas," Energies, MDPI, vol. 13(22), pages 1-24, November.
    4. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    5. Chicherin, Stanislav & Starikov, Aleksander & Zhuikov, Andrey, 2022. "Justifying network reconstruction when switching to low temperature district heating," Energy, Elsevier, vol. 248(C).
    6. Stanislav Chicherin & Andrey Zhuikov & Lyazzat Junussova, 2023. "District Heating for Poorly Insulated Residential Buildings—Comparing Results of Visual Study, Thermography, and Modeling," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    7. Stanislav Chicherin, 2025. "Conversion to Fourth-Generation District Heating (4GDH): Heat Accumulation Within Building Envelopes," Energies, MDPI, vol. 18(9), pages 1-19, April.
    8. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    9. Stanislav Chicherin, 2025. "Conversion to Variable Flow Rate—Advanced Control of a District Heating (DH) System with a Focus on Operational Data," Energies, MDPI, vol. 18(11), pages 1-27, May.
    10. Baxter L. M. Williams & R. J. Hooper & Daniel Gnoth & J. G. Chase, 2025. "Residential Electricity Demand Modelling: Validation of a Behavioural Agent-Based Approach," Energies, MDPI, vol. 18(6), pages 1-22, March.
    11. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    12. Michael J. Ritchie & Jacobus A.A. Engelbrecht & Marthinus J. Booysen, 2021. "Practically-Achievable Energy Savings with the Optimal Control of Stratified Water Heaters with Predicted Usage," Energies, MDPI, vol. 14(7), pages 1-23, April.
    13. Maltais, Louis-Gabriel & Gosselin, Louis, 2021. "Predictability analysis of domestic hot water consumption with neural networks: From single units to large residential buildings," Energy, Elsevier, vol. 229(C).
    14. Dongwen Chen & Zheng Chu, 2024. "Enhancing Power Supply Flexibility in Renewable Energy Systems with Optimized Energy Dispatch in Coupled CHP, Heat Pump, and Thermal Storage," Energies, MDPI, vol. 17(12), pages 1-29, June.
    15. Chen, Dongwen & Li, Yong & Abbas, Zulkarnain & Li, Dehong & Wang, Ruzhu, 2022. "Network flow calculation based on the directional nodal potential method for meshed heating networks," Energy, Elsevier, vol. 243(C).
    16. Hall, Rebecca & Kenway, Steven & O'Brien, Katherine & Memon, Fayyaz, 2025. "Quantification of residential water-related energy needs cohesion, validation and global representation to unlock efficiency gains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    17. Wang, Jiawei & Wang, Yi & Qiu, Dawei & Su, Hanguang & Strbac, Goran & Gao, Zhiwei, 2025. "Resilient energy management of a multi-energy building under low-temperature district heating: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 378(PA).
    18. Łukasz Amanowicz, 2021. "Peak Power of Heat Source for Domestic Hot Water Preparation (DHW) for Residential Estate in Poland as a Representative Case Study for the Climate of Central Europe," Energies, MDPI, vol. 14(23), pages 1-15, December.
    19. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    20. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2370-:d:1650143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.