IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2307-d1647058.html
   My bibliography  Save this article

Conversion to Fourth-Generation District Heating (4GDH): Heat Accumulation Within Building Envelopes

Author

Listed:
  • Stanislav Chicherin

    (Thermo and Fluid Dynamics (FLOW), Faculty of Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Vrije Universiteit Brussel (VUB) and Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium)

Abstract

This study investigates improving district heating (DH) systems by analyzing the effects of low-temperature operation on network efficiency, heat losses, and indoor temperature stability. A mathematical model is developed to simulate building heat performance under different supply temperatures, substation connection types, and envelope materials. The methodology involves detailed hourly heat load simulations and optimization techniques to assess the impact of temperature flexibility and heat accumulation within buildings. The results reveal that a 10 °C reduction in supply temperature leads to a heat loss decrease of up to 20%, significantly improving system efficiency. Moreover, buildings with higher thermal inertia and indirect substation connections exhibit better resilience to short-term temperature fluctuations, ensuring more stable indoor conditions. The analysis also demonstrates that optimizing temperature control can reduce operational costs by 19%, primarily by minimizing excessive heat supply and utilizing stored thermal energy effectively. Despite slight temperature fluctuations in extreme conditions, the system maintains indoor comfort levels within acceptable limits. This study concludes that transitioning to a lower-temperature DH system is feasible without compromising reliability, provided heat accumulation effects and supply flexibility are carefully managed. These findings offer a replicable approach for improving DH efficiency in networks with diverse building configurations.

Suggested Citation

  • Stanislav Chicherin, 2025. "Conversion to Fourth-Generation District Heating (4GDH): Heat Accumulation Within Building Envelopes," Energies, MDPI, vol. 18(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2307-:d:1647058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    2. Chicherin, Stanislav & Anvari-Moghaddam, Amjad, 2021. "Adjusting heat demands using the operational data of district heating systems," Energy, Elsevier, vol. 235(C).
    3. Arabkoohsar, Ahmad & Alsagri, Ali Sulaiman, 2020. "A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems," Energy, Elsevier, vol. 193(C).
    4. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    5. Chicherin, Stanislav & Starikov, Aleksander & Zhuikov, Andrey, 2022. "Justifying network reconstruction when switching to low temperature district heating," Energy, Elsevier, vol. 248(C).
    6. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
    7. Saletti, Costanza & Zimmerman, Nathan & Morini, Mirko & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2021. "Enabling smart control by optimally managing the State of Charge of district heating networks," Applied Energy, Elsevier, vol. 283(C).
    8. Andrić, I. & Fournier, J. & Lacarrière, B. & Le Corre, O. & Ferrão, P., 2018. "The impact of global warming and building renovation measures on district heating system techno-economic parameters," Energy, Elsevier, vol. 150(C), pages 926-937.
    9. Jebamalai, Joseph Maria & Marlein, Kurt & Laverge, Jelle, 2020. "Influence of centralized and distributed thermal energy storage on district heating network design," Energy, Elsevier, vol. 202(C).
    10. Kristensen, Martin Heine & Hedegaard, Rasmus Elbæk & Petersen, Steffen, 2020. "Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling," Energy, Elsevier, vol. 201(C).
    11. Braas, Hagen & Jordan, Ulrike & Best, Isabelle & Orozaliev, Janybek & Vajen, Klaus, 2020. "District heating load profiles for domestic hot water preparation with realistic simultaneity using DHWcalc and TRNSYS," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chicherin, Stanislav & Starikov, Aleksander & Zhuikov, Andrey, 2022. "Justifying network reconstruction when switching to low temperature district heating," Energy, Elsevier, vol. 248(C).
    2. Chicherin, Stanislav & Anvari-Moghaddam, Amjad, 2021. "Adjusting heat demands using the operational data of district heating systems," Energy, Elsevier, vol. 235(C).
    3. Stanislav Chicherin, 2025. "Conversion to Variable Flow Rate—Advanced Control of a District Heating (DH) System with a Focus on Operational Data," Energies, MDPI, vol. 18(11), pages 1-27, May.
    4. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Stanislav Chicherin & Andrey Zhuikov & Lyazzat Junussova, 2023. "Factors Affecting Indoor Temperature in the Case of District Heating," Sustainability, MDPI, vol. 15(21), pages 1-16, November.
    6. Stanislav Chicherin & Andrey Zhuikov & Lyazzat Junussova, 2023. "District Heating for Poorly Insulated Residential Buildings—Comparing Results of Visual Study, Thermography, and Modeling," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    7. Stanislav Chicherin, 2025. "Hydraulic Balancing of District Heating Systems and Improving Thermal Comfort in Buildings," Energies, MDPI, vol. 18(5), pages 1-26, March.
    8. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    9. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    10. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    11. Salah Vaisi & Saleh Mohammadi & Kyoumars Habibi, 2021. "Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks," Energies, MDPI, vol. 14(17), pages 1-17, September.
    12. Chicherin, Stanislav & Zhuikov, Andrey & Junussova, Lyazzat, 2022. "The new method for hydraulic calculations of a district heating (DH) network," Energy, Elsevier, vol. 260(C).
    13. Steinegger, Josef & Hammer, Andreas & Wallner, Stefan & Kienberger, Thomas, 2024. "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks," Applied Energy, Elsevier, vol. 372(C).
    14. Jakubek, Dariusz & Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Sułowicz, Maciej & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "Mathematical modelling and model validation of the heat losses in district heating networks," Energy, Elsevier, vol. 267(C).
    15. Gyula Richárd Kiss & Miklós Horváth & Zoltán Szánthó, 2025. "MATLAB Simulink-Based Modelling and Performance Analysis of District Heating Substations for Renewable Energy Integration," Energies, MDPI, vol. 18(9), pages 1-24, May.
    16. Barco-Burgos, J. & Bruno, J.C. & Eicker, U. & Saldaña-Robles, A.L. & Alcántar-Camarena, V., 2022. "Review on the integration of high-temperature heat pumps in district heating and cooling networks," Energy, Elsevier, vol. 239(PE).
    17. Anna Grzegórska & Piotr Rybarczyk & Valdas Lukoševičius & Joanna Sobczak & Andrzej Rogala, 2021. "Smart Asset Management for District Heating Systems in the Baltic Sea Region," Energies, MDPI, vol. 14(2), pages 1-25, January.
    18. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    19. Angelidis, O. & Ioannou, A. & Friedrich, D. & Thomson, A. & Falcone, G., 2023. "District heating and cooling networks with decentralised energy substations: Opportunities and barriers for holistic energy system decarbonisation," Energy, Elsevier, vol. 269(C).
    20. Triebs, Merlin Sebastian & Tsatsaronis, George, 2022. "From heat demand to heat supply: How to obtain more accurate feed-in time series for district heating systems," Applied Energy, Elsevier, vol. 311(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2307-:d:1647058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.