IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v208y2023icp512-537.html
   My bibliography  Save this article

Transient optimization of a new solar-wind multi-generation system for hydrogen production, desalination, clean electricity, heating, cooling, and energy storage using TRNSYS

Author

Listed:
  • Dezhdar, Ali
  • Assareh, Ehsanolah
  • Agarwal, Neha
  • bedakhanian, Ali
  • Keykhah, Sajjad
  • fard, Ghazaleh yeganeh
  • zadsar, Narjes
  • Aghajari, Mona
  • Lee, Moonyong

Abstract

In the current study, a renewable system with two potential wind and solar energies for electricity production, cooling, and heating has been investigated. The proposed system included reverse osmosis, heat pumps, fuel cell subsystems, wind turbines, photovoltaic/thermal panel units, battery storage, and a hydrogen storage tank. Given Iran's high potential for renewable energy, a performance analysis of six cities, Esfahan, Zanjan, Bandar Anzali, Ahvaz, Bandar Abbas, and Tabriz was done to determine where the proposed power plant should be located. Six decision factors were analyzed for system performance: solar panel angle, solar panel count, wind turbine count, cooling capacity, heating capacity, and fuel cell power. The findings demonstrate that the number of solar panels, wind turbines, and fuel cells significantly influences power, fuel consumption, and system costs. Finally, the outcomes were analyzed by the Response surface method to choose the best system that can satisfy the demand for residential units for one year. To evaluate the effectiveness of the suggested method, a 100-unit apartment building with a 196-square-meter floor space was considered. The results also showed that the combination of hydrogen units and battery storage reduced variations in supply and demand and correctly stabilized the stored energy during a drop in output. The suggested system has a life cycle cost of 674278.4$/h and the capacity to generate 225694.8 kWh of surplus power for residential units with a thermal comfort index. According to the optimization results, the system's optimal panel count was 106, the optimal angle was 26°, the optimal fuel cell power was 65.6 kW, the ideal wind turbine count was 24, the ideal heating capacity was 20.2 kW, and the optimal cooling capacity was 48.7 kW.

Suggested Citation

  • Dezhdar, Ali & Assareh, Ehsanolah & Agarwal, Neha & bedakhanian, Ali & Keykhah, Sajjad & fard, Ghazaleh yeganeh & zadsar, Narjes & Aghajari, Mona & Lee, Moonyong, 2023. "Transient optimization of a new solar-wind multi-generation system for hydrogen production, desalination, clean electricity, heating, cooling, and energy storage using TRNSYS," Renewable Energy, Elsevier, vol. 208(C), pages 512-537.
  • Handle: RePEc:eee:renene:v:208:y:2023:i:c:p:512-537
    DOI: 10.1016/j.renene.2023.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shrivastava, R.L. & Vinod Kumar, & Untawale, S.P., 2017. "Modeling and simulation of solar water heater: A TRNSYS perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 126-143.
    2. Ahmadi, Pouria & Rosen, Marc A. & Dincer, Ibrahim, 2012. "Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm," Energy, Elsevier, vol. 46(1), pages 21-31.
    3. Buonomano, Annamaria & Calise, Francesco & d'Accadia, Massimo Dentice & Vicidomini, Maria, 2018. "A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 155(C), pages 174-189.
    4. Ozturk, Merve & Dincer, Ibrahim, 2022. "System development and assessment for green hydrogen generation and blending with natural gas," Energy, Elsevier, vol. 261(PB).
    5. Rezvanpour, Mohammad & Borooghani, Danial & Torabi, Farschad & Pazoki, Maryam, 2020. "Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation," Renewable Energy, Elsevier, vol. 146(C), pages 1907-1921.
    6. López, Juan Camilo & Escobar, Alejandro & Cárdenas, Daniel Alejandro & Restrepo, Álvaro, 2021. "Parabolic trough or linear fresnel solar collectors? An exergy comparison of a solar-assisted sugarcane cogeneration power plant," Renewable Energy, Elsevier, vol. 165(P1), pages 139-150.
    7. Pinamonti, Maria & Baggio, Paolo, 2020. "Energy and economic optimization of solar-assisted heat pump systems with storage technologies for heating and cooling in residential buildings," Renewable Energy, Elsevier, vol. 157(C), pages 90-99.
    8. Kalogirou, S.A. & Agathokleous, R. & Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2019. "Development and validation of a new TRNSYS Type for thermosiphon flat-plate solar thermal collectors: energy and economic optimization for hot water production in different climates," Renewable Energy, Elsevier, vol. 136(C), pages 632-644.
    9. Izadi, Ali & Shahafve, Masoomeh & Ahmadi, Pouria & Hanafizadeh, Pedram, 2023. "Design, and optimization of COVID-19 hospital wards to produce Oxygen and electricity through solar PV panels with hydrogen storage systems by neural network-genetic algorithm," Energy, Elsevier, vol. 263(PA).
    10. Saedpanah, Ehsan & Pasdarshahri, Hadi, 2021. "Performance assessment of hybrid desiccant air conditioning systems: A dynamic approach towards achieving optimum 3E solution across the lifespan," Energy, Elsevier, vol. 234(C).
    11. Nafey, A.S. & Sharaf, M.A., 2010. "Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations," Renewable Energy, Elsevier, vol. 35(11), pages 2571-2580.
    12. Behzadi, Amirmohammad & Habibollahzade, Ali & Ahmadi, Pouria & Gholamian, Ehsan & Houshfar, Ehsan, 2019. "Multi-objective design optimization of a solar based system for electricity, cooling, and hydrogen production," Energy, Elsevier, vol. 169(C), pages 696-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dezhdar, Ali & Assareh, Ehsanolah & Agarwal, Neha & Baheri, Alireza & Ahmadinejad, Mehrdad & Zadsar, Narjes & Fard, Ghazaleh Yeganeh & Ali bedakhanian, & Aghajari, Mona & Ghodrat, Maryam & Rahman, Moh, 2024. "Modeling, optimization, and economic analysis of a comprehensive CCHP system with fuel cells, reverse osmosis, batteries, and hydrogen storage subsystems Powered by renewable energy sources," Renewable Energy, Elsevier, vol. 220(C).
    2. Dhanasingh Sivalinga Vijayan & Eugeniusz Koda & Arvindan Sivasuriyan & Jan Winkler & Parthiban Devarajan & Ramamoorthy Sanjay Kumar & Aleksandra Jakimiuk & Piotr Osinski & Anna Podlasek & Magdalena Da, 2023. "Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review," Energies, MDPI, vol. 16(18), pages 1-33, September.
    3. Xuan, Zhiwei & Ge, Minghui & Zhao, Chenyang & Li, Yanzhe & Wang, Shixue & Zhao, Yulong, 2024. "Effect of nonuniform solar radiation on the performance of solar thermoelectric generators," Energy, Elsevier, vol. 290(C).
    4. Corsini, Alessandro & Delibra, Giovanni & Pizzuti, Isabella & Tajalli-Ardekani, Erfan, 2023. "Challenges of renewable energy communities on small Mediterranean islands: A case study on Ponza island," Renewable Energy, Elsevier, vol. 215(C).
    5. Krarouch, Mohamed & Allouhi, Amine & Hamdi, Hassan & Outzourhit, Abdelkader, 2024. "Energy, exergy, environment and techno-economic analysis of hybrid solar-biomass systems for space heating and hot water supply: Case study of a Hammam building," Renewable Energy, Elsevier, vol. 222(C).
    6. Assareh, Ehsanolah & Karimi birgani, Kaveh & Agarwal, Neha & Arabkoohsar, Ahmad & Ghodrat, Maryam & Lee, Moonyong, 2023. "A transient study on a solar-assisted combined gas power cycle for sustainable multi-generation in hot and cold climates: Case studies of Dubai and Toronto," Energy, Elsevier, vol. 282(C).
    7. Huseyin Balta & Zehra Yumurtaci, 2024. "Investigation and Optimization of Integrated Electricity Generation from Wind, Wave, and Solar Energy Sources," Energies, MDPI, vol. 17(3), pages 1-34, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Assareh, Ehsanolah & Mousavi Asl, Seyed Sajad & Agarwal, Neha & Ahmadinejad, Mehrdad & Ghodrat, Maryam & Lee, Moonyong, 2023. "New optimized configuration for a hybrid PVT solar/electrolyzer/absorption chiller system utilizing the response surface method as a machine learning technique and multi-objective optimization," Energy, Elsevier, vol. 281(C).
    2. Dezhdar, Ali & Assareh, Ehsanolah & Agarwal, Neha & Baheri, Alireza & Ahmadinejad, Mehrdad & Zadsar, Narjes & Fard, Ghazaleh Yeganeh & Ali bedakhanian, & Aghajari, Mona & Ghodrat, Maryam & Rahman, Moh, 2024. "Modeling, optimization, and economic analysis of a comprehensive CCHP system with fuel cells, reverse osmosis, batteries, and hydrogen storage subsystems Powered by renewable energy sources," Renewable Energy, Elsevier, vol. 220(C).
    3. Saedpanah, Ehsan & Lahonian, Mansour & Malek Abad, Mahdi Zare, 2023. "Optimization of multi-source renewable energy air conditioning systems using a combination of transient simulation, response surface method, and 3E lifespan analysis," Energy, Elsevier, vol. 272(C).
    4. Mohammad Reza Assari & Ehsanolah Assareh & Neha Agarwal & Milad Setareh & Nazanin Alaei & Ali Moradian & Moonyong Lee, 2023. "Energy-Exergy–Economic (3E) -Optimization Analysis of a Solar System for Cooling, Heating, Power, and Freshwater Generation System for a Case Study Using Artificial Intelligence (AI)," Energies, MDPI, vol. 16(13), pages 1-17, June.
    5. Ismail, Muhammad Imran & Yunus, Nor Alafiza & Hashim, Haslenda, 2021. "Integration of solar heating systems for low-temperature heat demand in food processing industry – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Vassiliades, C. & Barone, G. & Buonomano, A. & Forzano, C. & Giuzio, G.F. & Palombo, A., 2022. "Assessment of an innovative plug and play PV/T system integrated in a prefabricated house unit: Active and passive behaviour and life cycle cost analysis," Renewable Energy, Elsevier, vol. 186(C), pages 845-863.
    7. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    8. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    9. Khargotra, Rohit & Kumar, Raj & András, Kovács & Fekete, Gusztáv & Singh, Tej, 2022. "Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach," Energy, Elsevier, vol. 261(PB).
    10. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.
    11. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    12. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    13. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    14. Sergey Obukhov & Ahmed Ibrahim & Mohamed A. Tolba & Ali M. El-Rifaie, 2019. "Power Balance Management of an Autonomous Hybrid Energy System Based on the Dual-Energy Storage," Energies, MDPI, vol. 12(24), pages 1-15, December.
    15. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    16. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    17. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    18. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    19. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    20. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:208:y:2023:i:c:p:512-537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.