IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124014939.html
   My bibliography  Save this article

Optimization of a hybrid renewable energy system for off-grid residential communities using numerical simulation, response surface methodology, and life cycle assessment

Author

Listed:
  • Roshani, Amir Salek
  • Assareh, Ehsanolah
  • Ershadi, Ali
  • Carvalho, Monica

Abstract

This paper presents an optimized hybrid renewable energy system tailored for off-grid residential communities, integrating wind, solar, and hydrogen technologies to meet electricity, cooling, heating, and water needs. The proposed optimization methodology combines numerical simulation, response surface methodology (RSM), and life cycle assessment (LCA), ensuring robust performance across diverse conditions. Key components include fuel cells, reverse osmosis systems, heat pumps, photovoltaic/thermal solar collectors, wind turbines, and hydrogen generation systems. The optimization process targets critical variables such as PVT panel area, the number of wind turbines, and fuel cell power. The optimal configuration was found to include 24 small-scale wind turbines, 159.46 m2 of PVT collectors, and 79.73 kW of fuel cell power. This configuration generated surplus electricity with net electricity usage (NEU) values of −123084.27 kWh/year in New York, −224245.29 kWh/year in Forks, and −215949.30 kWh/year in Santa Barbara. Additionally, the optimized systems achieved a significant reduction in life cycle cost (LCC), with Forks showing the lowest LCC at 304428.97 USD. The environmental impact was also minimized using the novel optimization approach, with the optimized systems achieving negative 100-year global warming potential (GWP100) values, indicating a net reduction in greenhouse gas emissions.

Suggested Citation

  • Roshani, Amir Salek & Assareh, Ehsanolah & Ershadi, Ali & Carvalho, Monica, 2024. "Optimization of a hybrid renewable energy system for off-grid residential communities using numerical simulation, response surface methodology, and life cycle assessment," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014939
    DOI: 10.1016/j.renene.2024.121425
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.