IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v245y2025ics0960148125004677.html
   My bibliography  Save this article

Flame dynamics, three-dimensional structure and flow field of premixed H2/air flame with heat loss

Author

Listed:
  • Shen, Xiaobo
  • Wang, Weiye
  • Ma, Yunsheng
  • Wen, Jennifer X.

Abstract

In this paper, the large eddy simulation (LES) model of OpenFOAM was used to study the flame propagation characteristics of H2/air premixed flame in a closed tube with an aspect ratio of 12. The flame phenomena observed in the experiment, such as spherical flame, finger-shaped flame, flat flame, classical tulip flame, T-shaped flame, and distorted tulip flame, were reproduced through numerical simulation. The mechanism of flame propagation was studied. The effects of different wall conditions and dimensional conditions were compared. The parameters, such as temperature, turbulence intensity, velocity, and laminar flame velocity was well characterized and analyzed to interpret the flame deformation. The numerical model provides good prediction on the flame front velocity and overpressure at the three-dimensional isothermal wall condition with heat loss, which could be adopted as a tool for flame investigation.

Suggested Citation

  • Shen, Xiaobo & Wang, Weiye & Ma, Yunsheng & Wen, Jennifer X., 2025. "Flame dynamics, three-dimensional structure and flow field of premixed H2/air flame with heat loss," Renewable Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:renene:v:245:y:2025:i:c:s0960148125004677
    DOI: 10.1016/j.renene.2025.122805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125004677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Xiaobo & Zhang, Chao & Xiu, Guangli & Zhu, Hongya, 2019. "Evolution of premixed stoichiometric hydrogen/air flame in a closed duct," Energy, Elsevier, vol. 176(C), pages 265-271.
    2. Hajialigol, N. & Mazaheri, Kiumars, 2017. "Thermal response of a turbulent premixed flame to the imposed inlet oscillating velocity," Energy, Elsevier, vol. 118(C), pages 209-220.
    3. Xiao, Huahua & He, Xuechao & Duan, Qiangling & Luo, Xisheng & Sun, Jinhua, 2014. "An investigation of premixed flame propagation in a closed combustion duct with a 90° bend," Applied Energy, Elsevier, vol. 134(C), pages 248-256.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ruikang & Luo, Zhenmin & Wang, Tao & Cheng, Fangming & Lin, Haifei & Zhu, Xiaochun, 2020. "Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures," Energy, Elsevier, vol. 213(C).
    2. Huadao Xing & Runze Yu & Guangan Xu & Xiaodong Li & Yanyu Qiu & Derong Wang & Bin Li & Lifeng Xie, 2022. "Theoretical and Experimental Investigation of Explosion Characteristics of Hydrogen Explosion in a Closed Vessel," Energies, MDPI, vol. 15(22), pages 1-14, November.
    3. Song, Heng & Lin, Yuzhen & Han, Xiao & Yang, Dong & Zhang, Chi & Sung, Chih-Jen, 2020. "The thermoacoustic instability in a stratified swirl burner and its passive control by using a slope confinement," Energy, Elsevier, vol. 195(C).
    4. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Cong, Beihua & Xiao, Qiuping & Liu, Haifeng, 2022. "Premixed syngas/air combustion in closed ducts with varied aspect ratios and initial pressures," Energy, Elsevier, vol. 254(PC).
    5. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Zhang, Chao, 2021. "Premixed CO/air combustion in a closed duct with inhibition," Energy, Elsevier, vol. 230(C).
    6. Yang, Ke & Chen, Kaifeng & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Wu, Jie & Jiang, Juncheng, 2021. "Experimental study on the effect of modified attapulgite powder with different outlet blockage ratios on methane-air explosion," Energy, Elsevier, vol. 237(C).
    7. Chengeng Qian & Mikhail A. Liberman, 2025. "Influence of Chemical Kinetics on Tulip Flame Formation in Highly Reactive (H 2 /Air) and Low Reactive (CH 4 /Air) Mixtures," Energies, MDPI, vol. 18(4), pages 1-20, February.
    8. Rashwan, Sherif S. & Mohany, Atef & Dincer, Ibrahim, 2020. "Investigation of self-induced thermoacoustic instabilities in gas turbine combustors," Energy, Elsevier, vol. 190(C).
    9. Bingang Guo & Jianfeng Gao & Bin Hao & Bingjian Ai & Bingyuan Hong & Xinsheng Jiang, 2022. "Experimental and Numerical Study on the Explosion Dynamics of the Non-Uniform Liquefied Petroleum Gas and Air Mixture in a Channel with Mixed Obstacles," Energies, MDPI, vol. 15(21), pages 1-16, October.
    10. Liang, He & Yan, Xingqing & Shi, Enhua & Wang, Xinfei & Qi, Chang & Ding, Jianfei & Zhang, Lianzhuo & Chen, Lei & Lv, Xianshu & Yu, Jianliang, 2024. "Effect of hydrogen blending on ammonia/air explosion characteristics under wide equivalence ratio," Energy, Elsevier, vol. 297(C).
    11. Wang, Shuo & Xiao, Guoqing & Feng, Yu & Mi, Hongfu, 2023. "Investigation of premixed hydrogen/methane flame propagation and kinetic characteristics for continuous obstacles with gradient barrier ratio," Energy, Elsevier, vol. 267(C).
    12. Xiao, Huahua & Duan, Qiangling & Sun, Jinhua, 2018. "Premixed flame propagation in hydrogen explosions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1988-2001.
    13. Dou, Zengguo & Shen, Xiaobo & Zhang, Zhenwu & Zhou, Feng & Ma, Yunsheng & Zou, Xiong & Liu, Haifeng & Wang, Fuchen, 2023. "Effects of aspect ratio and initial pressure on asymmetric flame and flame instability of premixed CO/air," Energy, Elsevier, vol. 278(PA).
    14. Shen, Xiaobo & Xu, Jiaying & Wen, Jennifer X., 2021. "Phenomenological characteristics of hydrogen/air premixed flame propagation in closed rectangular channels," Renewable Energy, Elsevier, vol. 174(C), pages 606-615.
    15. Wu, Gang & Lu, ZhengLi & Guan, Yiheng & Li, Yuelin & Ji, C.Z., 2018. "Characterizing nonlinear interaction between a premixed swirling flame and acoustics: Heat-driven acoustic mode switching and triggering," Energy, Elsevier, vol. 158(C), pages 546-554.
    16. Wu, Gang & Xu, Xiao & Li, S. & Ji, C., 2019. "Experimental studies of mitigating premixed flame-excited thermoacoustic oscillations in T-shaped Combustor using an electrical heater," Energy, Elsevier, vol. 174(C), pages 1276-1282.
    17. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Li, Shihuai & Ji, C.Z., 2019. "Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater," Applied Energy, Elsevier, vol. 239(C), pages 331-342.
    18. Yang, Xufeng & Yu, Minggao & Zheng, Kai & Wan, Shaojie & Wang, Liang, 2019. "A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts," Energy, Elsevier, vol. 178(C), pages 436-446.

    More about this item

    Keywords

    H2/air; Premixed flame; LES; Flame deformation; Turbulence;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:245:y:2025:i:c:s0960148125004677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.