IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp546-554.html
   My bibliography  Save this article

Characterizing nonlinear interaction between a premixed swirling flame and acoustics: Heat-driven acoustic mode switching and triggering

Author

Listed:
  • Wu, Gang
  • Lu, ZhengLi
  • Guan, Yiheng
  • Li, Yuelin
  • Ji, C.Z.

Abstract

The aim of this present study is to examine the critical role of air-fuel equivalence ratio Ф and air flow rate on triggering self-excited thermoacoustic oscillations in a swirling combustor, which is widely applied in industry to achieve low combustion emissions. For this, experimental study of the effect of air-fuel equivalence ratio in a propane-burnt swirling combustor is conducted to gain insights on the nonlinear dynamics behaviors of the thermoacoustic oscillations. A series experiments are conducted by varying 1) the air flow rate and 2) the equivalence ratio. It is found that the air flow rate and the equivalence ratio play important roles on producing limit cycle thermoacoustic oscillations. The frequencies and amplitudes of these oscillations strongly depend on the equivalence ratio. In addition, the dominant thermoacoustic mode is found to switch from a higher frequency at ω3 to a lower one at ω1 for a given Φ, as the air flow rate Qa is varied. However, as Qa is set to a given value, increasing the equivalence ratio from 0.8 to 1.2 leads to the dominant frequency being shifted by approximately 20%. In general, the present study sheds lights on the nonlinear characteristics and behaviors of heat-driven acoustic oscillations in a swirling thermoacoustic system.

Suggested Citation

  • Wu, Gang & Lu, ZhengLi & Guan, Yiheng & Li, Yuelin & Ji, C.Z., 2018. "Characterizing nonlinear interaction between a premixed swirling flame and acoustics: Heat-driven acoustic mode switching and triggering," Energy, Elsevier, vol. 158(C), pages 546-554.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:546-554
    DOI: 10.1016/j.energy.2018.06.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baigmohammadi, Mohammadreza & Tabejamaat, Sadegh & Faghani-Lamraski, Morteza, 2017. "Experimental study on the effects of mixture flow rate, equivalence ratio, oxygen enhancement, and geometrical parameters on propane-air premixed flame dynamics in non-adiabatic meso-scale reactors," Energy, Elsevier, vol. 121(C), pages 657-675.
    2. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    3. Karimi, Nader, 2014. "Response of a conical, laminar premixed flame to low amplitude acoustic forcing – A comparison between experiment and kinematic theories," Energy, Elsevier, vol. 78(C), pages 490-500.
    4. Wei, Z.L. & Leung, C.W. & Cheung, C.S. & Huang, Z.H., 2017. "Single-valued prediction of markers on heat release rate for laminar premixed biogas-hydrogen and methane-hydrogen flames," Energy, Elsevier, vol. 133(C), pages 35-45.
    5. Taner, Tolga, 2018. "Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations," Energy, Elsevier, vol. 143(C), pages 284-294.
    6. Fichera, A. & Pagano, A., 2009. "Monitoring combustion unstable dynamics by means of control charts," Applied Energy, Elsevier, vol. 86(9), pages 1574-1581, September.
    7. Li, Xinyan & Zhao, Dan & Yang, Xinglin, 2017. "Experimental and theoretical bifurcation study of a nonlinear standing-wave thermoacoustic system," Energy, Elsevier, vol. 135(C), pages 553-562.
    8. Valera-Medina, Agustin & Marsh, Richard & Runyon, Jon & Pugh, Daniel & Beasley, Paul & Hughes, Timothy & Bowen, Phil, 2017. "Ammonia–methane combustion in tangential swirl burners for gas turbine power generation," Applied Energy, Elsevier, vol. 185(P2), pages 1362-1371.
    9. Hajialigol, N. & Mazaheri, Kiumars, 2017. "Thermal response of a turbulent premixed flame to the imposed inlet oscillating velocity," Energy, Elsevier, vol. 118(C), pages 209-220.
    10. Li, Shen & Li, Qiangtian & Tang, Lin & Yang, Bin & Fu, Jianqin & Clarke, C.A. & Jin, Xiao & Ji, C.Z. & Zhao, He, 2016. "Theoretical and experimental demonstration of minimizing self-excited thermoacoustic oscillations by applying anti-sound technique," Applied Energy, Elsevier, vol. 181(C), pages 399-407.
    11. Li, Yan-Qin & Cao, Hai-Liang & Zhou, Huai-Chun & Zhou, Jun-Jie & Liao, Xiao-Yan, 2017. "Research on dynamics of a laminar diffusion flame with bulk flow forcing," Energy, Elsevier, vol. 141(C), pages 1300-1312.
    12. Zhang, Zhiguo & Zhao, Dan & Li, S.H. & Ji, C.Z. & Li, X.Y. & Li, J.W., 2015. "Transient energy growth of acoustic disturbances in triggering self-sustained thermoacoustic oscillations," Energy, Elsevier, vol. 82(C), pages 370-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Heng & Han, Xiao & Su, Tong & Xue, Xin & Zhang, Chi & Sung, Chih-Jen, 2021. "Parametric study of the slope confinement for passive control in a centrally-staged swirl burner," Energy, Elsevier, vol. 233(C).
    2. Rashwan, Sherif S. & Mohany, Atef & Dincer, Ibrahim, 2020. "Investigation of self-induced thermoacoustic instabilities in gas turbine combustors," Energy, Elsevier, vol. 190(C).
    3. Wu, Gang & Xu, Xiao & Li, S. & Ji, C., 2019. "Experimental studies of mitigating premixed flame-excited thermoacoustic oscillations in T-shaped Combustor using an electrical heater," Energy, Elsevier, vol. 174(C), pages 1276-1282.
    4. Kwak, Sanghyeok & Choi, Jaehong & Lee, Min Chul & Yoon, Youngbin, 2021. "Predicting instability frequency and amplitude using artificial neural network in a partially premixed combustor," Energy, Elsevier, vol. 230(C).
    5. Duan, Runze & Zhang, Heng & Zhang, Yan & Liu, Liansheng & Tian, Liang & Zhang, Xiaoyu, 2019. "Effect of longitudinal baffled blades on the first-order tangential acoustic mode in cylindrical chamber," Energy, Elsevier, vol. 183(C), pages 901-911.
    6. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    7. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Li, Shihuai & Ji, C.Z., 2019. "Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater," Applied Energy, Elsevier, vol. 239(C), pages 331-342.
    8. Song, Heng & Lin, Yuzhen & Han, Xiao & Yang, Dong & Zhang, Chi & Sung, Chih-Jen, 2020. "The thermoacoustic instability in a stratified swirl burner and its passive control by using a slope confinement," Energy, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Gang & Xu, Xiao & Li, S. & Ji, C., 2019. "Experimental studies of mitigating premixed flame-excited thermoacoustic oscillations in T-shaped Combustor using an electrical heater," Energy, Elsevier, vol. 174(C), pages 1276-1282.
    2. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Li, Shihuai & Ji, C.Z., 2019. "Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater," Applied Energy, Elsevier, vol. 239(C), pages 331-342.
    3. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Ji, C.Z., 2018. "Numerical and experimental demonstration of actively passive mitigating self-sustained thermoacoustic oscillations," Applied Energy, Elsevier, vol. 222(C), pages 257-266.
    4. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    5. Fan, Feilong & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Hu, Yan & Ma, Zhoujun, 2018. "A conditional depreciation balancing strategy for the equitable operation of extended hybrid energy storage systems," Applied Energy, Elsevier, vol. 228(C), pages 1937-1952.
    6. Li, Yan-Qin & Cao, Hai-Liang & Zhou, Huai-Chun & Zhou, Jun-Jie & Liao, Xiao-Yan, 2017. "Research on dynamics of a laminar diffusion flame with bulk flow forcing," Energy, Elsevier, vol. 141(C), pages 1300-1312.
    7. Singh, Gurjeet & Singh, P.J. & Tyagi, V.V. & Barnwal, P. & Pandey, A.K., 2019. "Exergy and thermo-economic analysis of ghee production plant in dairy industry," Energy, Elsevier, vol. 167(C), pages 602-618.
    8. Paolo Postiglione & Alfredo Cartone & Domenica Panzera, 2020. "Economic Convergence in EU NUTS 3 Regions: A Spatial Econometric Perspective," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    9. Xin, Shuaishuai & Shen, Jianguo & Liu, Guocheng & Chen, Qinghua & Xiao, Zhou & Zhang, Guodong & Xin, Yanjun, 2020. "High electricity generation and COD removal from cattle wastewater in microbial fuel cells with 3D air cathode employed non-precious Cu2O/reduced graphene oxide as cathode catalyst," Energy, Elsevier, vol. 196(C).
    10. Wang, Bin & Ma, Guangliang & Xu, Dan & Zhang, Le & Zhou, Jiahui, 2018. "Switching sliding-mode control strategy based on multi-type restrictive condition for voltage control of buck converter in auxiliary energy source," Applied Energy, Elsevier, vol. 228(C), pages 1373-1384.
    11. Wu, Gang & Jin, Xiao & Li, Qiangtian & Zhao, He & Ahmed, I.R. & Fu, Jianqin, 2016. "Experimental and numerical definition of the extreme heater locations in a closed-open standing wave thermoacoustic system," Applied Energy, Elsevier, vol. 182(C), pages 320-330.
    12. Zhao, Dan & Li, Lei, 2015. "Effect of choked outlet on transient energy growth analysis of a thermoacoustic system," Applied Energy, Elsevier, vol. 160(C), pages 502-510.
    13. Li, Shen & Li, Qiangtian & Tang, Lin & Yang, Bin & Fu, Jianqin & Clarke, C.A. & Jin, Xiao & Ji, C.Z. & Zhao, He, 2016. "Theoretical and experimental demonstration of minimizing self-excited thermoacoustic oscillations by applying anti-sound technique," Applied Energy, Elsevier, vol. 181(C), pages 399-407.
    14. Mirhosseini, Mojtaba & Rezania, Alireza & Rosendahl, Lasse, 2019. "Harvesting waste heat from cement kiln shell by thermoelectric system," Energy, Elsevier, vol. 168(C), pages 358-369.
    15. de Rubeis, Tullio & Nardi, Iole & Ambrosini, Dario & Paoletti, Domenica, 2018. "Is a self-sufficient building energy efficient? Lesson learned from a case study in Mediterranean climate," Applied Energy, Elsevier, vol. 218(C), pages 131-145.
    16. Zhao, Dan & Li, Shen & Zhao, He, 2016. "Entropy-involved energy measure study of intrinsic thermoacoustic oscillations," Applied Energy, Elsevier, vol. 177(C), pages 570-578.
    17. Sun, Yuze & Zhao, Dan & Ni, Siliang & David, Tim & Zhang, Yang, 2020. "Entropy and flame transfer function analysis of a hydrogen-fueled diffusion flame in a longitudinal combustor," Energy, Elsevier, vol. 194(C).
    18. Mahdis sadat Jalaee & Alireza Shakibaei & Amin GhasemiNejad & Sayyed Abdolmajid Jalaee & Reza Derakhshani, 2021. "A Novel Computational Intelligence Approach for Coal Consumption Forecasting in Iran," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    19. Zhang, Zhiguo & Zhao, Dan & Dobriyal, R. & Zheng, Youqu & Yang, Wenming, 2015. "Theoretical and experimental investigation of thermoacoustics transfer function," Applied Energy, Elsevier, vol. 154(C), pages 131-142.
    20. Zhang, Zhiguo & Zhao, Dan & Ni, Siliang & Sun, Yuze & Wang, Bing & Chen, Yong & Li, Guoneng & Li, S., 2019. "Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl combustor," Applied Energy, Elsevier, vol. 235(C), pages 463-472.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:546-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.