IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7999-d955517.html
   My bibliography  Save this article

Experimental and Numerical Study on the Explosion Dynamics of the Non-Uniform Liquefied Petroleum Gas and Air Mixture in a Channel with Mixed Obstacles

Author

Listed:
  • Bingang Guo

    (School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China)

  • Jianfeng Gao

    (School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
    National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, China
    Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China)

  • Bin Hao

    (School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China)

  • Bingjian Ai

    (School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China)

  • Bingyuan Hong

    (School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
    National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, China
    Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China)

  • Xinsheng Jiang

    (Department of Oil, Army Logistical University, Chongqing 401331, China)

Abstract

Mixed obstacles have a great influence on the deflagration process of liquefied petroleum gas (LPG)-air premixed combustible gas with concentration gradient. The arrangement of mixed obstacles may further stimulate overpressure and flame propagation. In this work, based on experimental and numerical simulations, this paper analyzes the flame and overpressure, and mainly studies the coupling relationship among the explosion overpressure characteristics, the structure of flame and the speed of flame propagation. The result shows that when the rectangular obstacle is 100 mm away from the ignition source, not only the speed of flame is the fastest, but also the time required to reach the maximum over-pressure is the shortest. In this configuration, an elongated flame is formed between a rectangular obstacle and a flat obstacle, and an obvious backflow structure appears. In addition, the average growth rate of overpressure has a minimum value, reaching at −35 MPa/s. The existence of rectangular obstacles further stimulates the overpressure. When the rectangular obstacle is 400 mm away from the ignition source, the maximum overpressure value is the highest among the four configurations. Besides, the time when the maximum area of flame appears in the simulation is almost the same as the time when the maximum overpressure is obtained. In addition, the average growth rate of overpressure increases significantly after touching the rectangular obstacle, which coincides with the mutation time of the front tip of the flame, overpressure and area of flame after the flame encounters the rectangular obstacle. This research has an important theoretical guiding significance for preventing LPG leakage and explosion accidents in a long and narrow space.

Suggested Citation

  • Bingang Guo & Jianfeng Gao & Bin Hao & Bingjian Ai & Bingyuan Hong & Xinsheng Jiang, 2022. "Experimental and Numerical Study on the Explosion Dynamics of the Non-Uniform Liquefied Petroleum Gas and Air Mixture in a Channel with Mixed Obstacles," Energies, MDPI, vol. 15(21), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7999-:d:955517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7999/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7999/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Kai & Wu, Qifen & Chen, Chuandong & Xing, Zhixiang & Hao, Yongmei & Yu, Minggao, 2022. "Explosion behavior of non-uniform methane/air mixture in an obstructed duct with different blockage ratios," Energy, Elsevier, vol. 255(C).
    2. Shen, Xiaobo & Zhang, Chao & Xiu, Guangli & Zhu, Hongya, 2019. "Evolution of premixed stoichiometric hydrogen/air flame in a closed duct," Energy, Elsevier, vol. 176(C), pages 265-271.
    3. Jian Guo & Jun Wang & Baikang Zhu & Bingyuan Hong & Cuicui Li & Jianhui He, 2022. "A Risk Evaluation Method of Coastal Oil Depots for Heavy Rainfall Vulnerability Assessment," Sustainability, MDPI, vol. 14(11), pages 1-12, June.
    4. Guiliang Li & Bingyuan Hong & Haoran Hu & Bowen Shao & Wei Jiang & Cuicui Li & Jian Guo, 2022. "Risk Management of Island Petrochemical Park: Accident Early Warning Model Based on Artificial Neural Network," Energies, MDPI, vol. 15(9), pages 1-13, April.
    5. Luo, Zhenmin & Kang, Xiaofeng & Wang, Tao & Su, Bin & Cheng, Fangming & Deng, Jun, 2021. "Effects of an obstacle on the deflagration behavior of premixed liquefied petroleum gas-air mixtures in a closed duct," Energy, Elsevier, vol. 234(C).
    6. Wojciech Rudy & Andrzej Teodorczyk, 2020. "Numerical Simulations of DDT Limits in Hydrogen-Air Mixtures in Obstacle Laden Channel," Energies, MDPI, vol. 14(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Yakush & Oleg Semenov & Maxim Alexeev, 2023. "Premixed Propane–Air Flame Propagation in a Narrow Channel with Obstacles," Energies, MDPI, vol. 16(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Guilong & Wang, Jian & Zheng, Ligang & Pan, Rongkun & Lu, Chang & Wang, Yan & Zhao, Yongxian & Li, Yanjie, 2023. "Effect of hydrogen addition on explosion characteristics of premixed methane/air mixture under different equivalence ratio distributions," Energy, Elsevier, vol. 276(C).
    2. Huadao Xing & Runze Yu & Guangan Xu & Xiaodong Li & Yanyu Qiu & Derong Wang & Bin Li & Lifeng Xie, 2022. "Theoretical and Experimental Investigation of Explosion Characteristics of Hydrogen Explosion in a Closed Vessel," Energies, MDPI, vol. 15(22), pages 1-14, November.
    3. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Zhang, Chao, 2021. "Premixed CO/air combustion in a closed duct with inhibition," Energy, Elsevier, vol. 230(C).
    4. Cai, Peng & Liu, Zhenyi & Li, Mingzhi & Zhao, Yao & Li, Pengliang & Li, Shuhong & Li, Yingke, 2022. "Experimental study of effect of equivalence ratio and initial turbulence on the explosion characteristics of LPG/DME clean blended fuel," Energy, Elsevier, vol. 250(C).
    5. Shen, Xiaobo & Xu, Jiaying & Wen, Jennifer X., 2021. "Phenomenological characteristics of hydrogen/air premixed flame propagation in closed rectangular channels," Renewable Energy, Elsevier, vol. 174(C), pages 606-615.
    6. Wu, Qifen & Han, Shixin & Li, Shanshan & Yu, Minggao & Zheng, Kai & Li, Haitao & Pei, Bei & Wen, Xiaoping, 2023. "Explosive characteristics of non-uniform methane-air mixtures in half-open vertical channels with ignition at the open end," Energy, Elsevier, vol. 284(C).
    7. Li, Ruikang & Luo, Zhenmin & Wang, Tao & Cheng, Fangming & Lin, Haifei & Zhu, Xiaochun, 2020. "Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures," Energy, Elsevier, vol. 213(C).
    8. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Cong, Beihua & Xiao, Qiuping & Liu, Haifeng, 2022. "Premixed syngas/air combustion in closed ducts with varied aspect ratios and initial pressures," Energy, Elsevier, vol. 254(PC).
    9. Cao, Jiaojiao & Wu, Jiansong & Zhao, Yimeng & Cai, Jitao & Bai, Yiping & Pang, Lei, 2023. "Suppression effects of energy-absorbing materials on natural gas explosion in utility tunnels," Energy, Elsevier, vol. 281(C).
    10. Dou, Zengguo & Shen, Xiaobo & Zhang, Zhenwu & Zhou, Feng & Ma, Yunsheng & Zou, Xiong & Liu, Haifeng & Wang, Fuchen, 2023. "Effects of aspect ratio and initial pressure on asymmetric flame and flame instability of premixed CO/air," Energy, Elsevier, vol. 278(PA).
    11. Yuan, Bihe & He, Yunlong & Chen, Xianfeng & Ding, Qingquan & Tang, Yi & Zhang, Yuduo & Li, Yi & Zhao, Qi & Huang, Chuyuan & Fang, Quan & Wang, Liancong & Jin, Hang, 2022. "Flame and shock wave evolution characteristics of methane explosion in a closed horizontal pipeline filled with a three-dimensional mesh porous material," Energy, Elsevier, vol. 260(C).
    12. Jianfeng Gao & Bingjian Ai & Bin Hao & Bingang Guo & Bingyuan Hong & Xinsheng Jiang, 2022. "Effect of Obstacles Gradient Arrangement on Non-Uniformly Distributed LPG–Air Premixed Gas Deflagration," Energies, MDPI, vol. 15(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7999-:d:955517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.