IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics036054422202031x.html
   My bibliography  Save this article

Flame and shock wave evolution characteristics of methane explosion in a closed horizontal pipeline filled with a three-dimensional mesh porous material

Author

Listed:
  • Yuan, Bihe
  • He, Yunlong
  • Chen, Xianfeng
  • Ding, Qingquan
  • Tang, Yi
  • Zhang, Yuduo
  • Li, Yi
  • Zhao, Qi
  • Huang, Chuyuan
  • Fang, Quan
  • Wang, Liancong
  • Jin, Hang

Abstract

In the energy security field, porous materials are regarded as superb explosive attenuators that quench flames and dissipate explosion energy waves. Traditional porous materials based on polymer have been extensively explored for their flame and explosion-proof capabilities, but their applications are limited due to the lack of indispensable physical properties such as flame-retardant and antistatic properties. The polymer composites may contaminate the oil medium, as does the deterioration of their properties. By designing the material's structure and formula, a new three-dimensional mesh porous flame and explosion-proof material (TFEP) is developed through melt blending—extrusion spinning technology and material's explosion-proof performance will also be enhanced. This porous material integrates flame-retardant, antistatic, and oil-resistant performances. The TFEP's suppression effect on 9.5 vol% CH4/air premixed gas explosion was investigated under various filling conditions, and the optimal filling condition of TFEP was explored. Under these conditions, TFEP completely quenches the explosion flame, and the maximum explosion overpressure decay ratio for the upstream and downstream of the pipeline are 87.5% and 82.5%, respectively. TFEP eliminates the electrostatic risk generated by long-term friction of traditional polymer materials. It has moderate oil resistance and may be a candidate for explosion-proof materials in the fuel oil field.

Suggested Citation

  • Yuan, Bihe & He, Yunlong & Chen, Xianfeng & Ding, Qingquan & Tang, Yi & Zhang, Yuduo & Li, Yi & Zhao, Qi & Huang, Chuyuan & Fang, Quan & Wang, Liancong & Jin, Hang, 2022. "Flame and shock wave evolution characteristics of methane explosion in a closed horizontal pipeline filled with a three-dimensional mesh porous material," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s036054422202031x
    DOI: 10.1016/j.energy.2022.125137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422202031X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Ke & Chen, Kaifeng & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Wu, Jie & Jiang, Juncheng, 2021. "Experimental study on the effect of modified attapulgite powder with different outlet blockage ratios on methane-air explosion," Energy, Elsevier, vol. 237(C).
    2. Luo, Zhenmin & Kang, Xiaofeng & Wang, Tao & Su, Bin & Cheng, Fangming & Deng, Jun, 2021. "Effects of an obstacle on the deflagration behavior of premixed liquefied petroleum gas-air mixtures in a closed duct," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jiaojiao & Wu, Jiansong & Zhao, Yimeng & Cai, Jitao & Bai, Yiping & Pang, Lei, 2023. "Suppression effects of energy-absorbing materials on natural gas explosion in utility tunnels," Energy, Elsevier, vol. 281(C).
    2. Wu, Yang & Meng, Xiangbao & Zhang, Yansong & Shi, Lei & Wu, Qiyan & Liu, Li & Wang, Zhifeng & Liu, Jiqing & Yan, Ke & Wang, Tong, 2023. "Experimental study on the suppression of coal dust explosion by silica aerogel," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Ke & Chen, Shujia & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Zheng, Kai & Jiang, Juncheng, 2023. "Experimental study on the coupling effect of heptafluoropropane and obstacles with different slits on the methane-air explosion," Energy, Elsevier, vol. 269(C).
    2. Bingang Guo & Jianfeng Gao & Bin Hao & Bingjian Ai & Bingyuan Hong & Xinsheng Jiang, 2022. "Experimental and Numerical Study on the Explosion Dynamics of the Non-Uniform Liquefied Petroleum Gas and Air Mixture in a Channel with Mixed Obstacles," Energies, MDPI, vol. 15(21), pages 1-16, October.
    3. Cai, Peng & Liu, Zhenyi & Li, Mingzhi & Zhao, Yao & Li, Pengliang & Li, Shuhong & Li, Yingke, 2022. "Experimental study of effect of equivalence ratio and initial turbulence on the explosion characteristics of LPG/DME clean blended fuel," Energy, Elsevier, vol. 250(C).
    4. Liu, Guilong & Wang, Jian & Zheng, Ligang & Pan, Rongkun & Lu, Chang & Wang, Yan & Zhao, Yongxian & Li, Yanjie, 2023. "Effect of hydrogen addition on explosion characteristics of premixed methane/air mixture under different equivalence ratio distributions," Energy, Elsevier, vol. 276(C).
    5. Wu, Yang & Meng, Xiangbao & Zhang, Yansong & Shi, Lei & Wu, Qiyan & Liu, Li & Wang, Zhifeng & Liu, Jiqing & Yan, Ke & Wang, Tong, 2023. "Experimental study on the suppression of coal dust explosion by silica aerogel," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s036054422202031x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.