IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223035533.html
   My bibliography  Save this article

Study on the inhibition of explosion and combustion of coal dust based on the structure of core-shell microencapsulated polyurethane

Author

Listed:
  • Yan, Ke
  • Qi, Shaobo
  • Li, Runhan
  • Sun, Haoshi
  • Bai, Jiaqi
  • Wang, Kuo
  • Li, Mingzhi
  • Yuan, Mengqi

Abstract

In order to study the effect of core-shell microencapsulated ammonium polyphosphate modified materials on the suppression of explosion and combustion of different metamorphic coal, a core-shell microencapsulated ammonium polyphosphate explosion inhibitor was prepared using in-situ polymerization method. Through experiments on flame suppression and overpressure suppression during explosive combustion, the inhibitory effect of core-shell microencapsulated ammonium polyphosphate explosion suppressant on coal dust explosion was studied, revealing the coupling inhibition mechanism of thermal propagation isolation obstruction effect and group reaction reduction of key atoms. The experimental results show that when 60 wt% core-shell microencapsulated ammonium polyphosphate explosion suppressant is added, the suppression effect on the explosion and combustion of different metamorphic coal is significant, and the flame propagation and pressure rise of coal dust explosion can be basically achieved. By analyzing the substances before and after the explosion through characterization experiments, the inhibitory mechanism of core-shell microencapsulated ammonium polyphosphate explosion suppressant on different metamorphic coal was obtained. Expanding the application field of microcapsule materials provides important methods and theoretical basis for developing core shell microcapsule flame retardant and explosion suppression materials to prevent coal dust explosion disasters.

Suggested Citation

  • Yan, Ke & Qi, Shaobo & Li, Runhan & Sun, Haoshi & Bai, Jiaqi & Wang, Kuo & Li, Mingzhi & Yuan, Mengqi, 2024. "Study on the inhibition of explosion and combustion of coal dust based on the structure of core-shell microencapsulated polyurethane," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035533
    DOI: 10.1016/j.energy.2023.130159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223035533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Yang & Meng, Xiangbao & Zhang, Yansong & Shi, Lei & Wu, Qiyan & Liu, Li & Wang, Zhifeng & Liu, Jiqing & Yan, Ke & Wang, Tong, 2023. "Experimental study on the suppression of coal dust explosion by silica aerogel," Energy, Elsevier, vol. 267(C).
    2. Jiang, Haipeng & Bi, Mingshu & Gao, Zehua & Zhang, Zongling & Gao, Wei, 2022. "Effect of turbulence intensity on flame propagation and extinction limits of methane/coal dust explosions," Energy, Elsevier, vol. 239(PC).
    3. Yang, Ke & Chen, Kaifeng & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Wu, Jie & Jiang, Juncheng, 2021. "Experimental study on the effect of modified attapulgite powder with different outlet blockage ratios on methane-air explosion," Energy, Elsevier, vol. 237(C).
    4. Dai, Huaming & Yin, Hepeng & Zhai, Cheng, 2022. "Experimental investigation on the inhibition of coal dust deflagration by the composite inhibitor of floating bead and melamine cyanurate," Energy, Elsevier, vol. 261(PA).
    5. Jiang, Haipeng & Bi, Mingshu & Huang, Lei & Zhou, Yonghao & Gao, Wei, 2022. "Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions," Energy, Elsevier, vol. 239(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Siyu & Qin, Botao & Ma, Dong & Zhou, Qigeng & Luo, Zhongzheng, 2023. "Suppressive effects of alkali metal salt modified dry water material on methane-air explosion," Energy, Elsevier, vol. 285(C).
    2. Dai, Huaming & Yin, Hepeng & Zhai, Cheng, 2022. "Experimental investigation on the inhibition of coal dust deflagration by the composite inhibitor of floating bead and melamine cyanurate," Energy, Elsevier, vol. 261(PA).
    3. Zhao, Qi & Li, Yi & Chen, Xianfeng, 2022. "Fire extinguishing and explosion suppression characteristics of explosion suppression system with N2/APP after methane/coal dust explosion," Energy, Elsevier, vol. 257(C).
    4. Wang, Tao & Liang, He & Luo, Zhenmin & Yu, Jianliang & Cheng, Fangming & Zhao, Jingyu & Su, Bin & Li, Ruikang & Wang, Xuqing & Feng, Zairong & Deng, Jun, 2023. "Thermal suppression effects of diluent gas on the deflagration behavior of H2–air mixtures," Energy, Elsevier, vol. 272(C).
    5. Ye, Congliang & Zhang, Qi, 2022. "Chain explosion behaviors induced by discontinuous methane/air distribution," Energy, Elsevier, vol. 252(C).
    6. Valeriy Nikitin & Elena Mikhalchenko & Lyuben Stamov & Nickolay Smirnov & Vilen Azatyan, 2023. "Mathematical Modeling of the Hydrodynamic Instability and Chemical Inhibition of Detonation Waves in a Syngas–Air Mixture," Mathematics, MDPI, vol. 11(24), pages 1-15, December.
    7. Jing, Qi & Wang, Dan & Shi, Congling, 2023. "Effects of aluminum powder additives on deflagration and detonation performance of JP-10/DEE mixed fuel under weak and strong ignition conditions," Applied Energy, Elsevier, vol. 331(C).
    8. Yang, Ke & Chen, Shujia & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Zheng, Kai & Jiang, Juncheng, 2023. "Experimental study on the coupling effect of heptafluoropropane and obstacles with different slits on the methane-air explosion," Energy, Elsevier, vol. 269(C).
    9. Cao, Jiaojiao & Wu, Jiansong & Zhao, Yimeng & Cai, Jitao & Bai, Yiping & Pang, Lei, 2023. "Suppression effects of energy-absorbing materials on natural gas explosion in utility tunnels," Energy, Elsevier, vol. 281(C).
    10. Tianyou Pei & Feixue Chen & Shuheng Qiu & Dawei Wu & Weiwei Gao & Zhaoping Xu & Chi Zhang, 2022. "Research on the Intake Port of a Uniflow Scavenging GDI Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 15(6), pages 1-15, March.
    11. Wang, Cai-Ping & Deng, Yin & Xiao, Yang & Deng, Jun & Shu, Chi-Min & Jiang, Zhi-Gang, 2022. "Gas-heat characteristics and oxidation kinetics of coal spontaneous combustion in heating and decaying processes," Energy, Elsevier, vol. 250(C).
    12. Yuan, Bihe & He, Yunlong & Chen, Xianfeng & Ding, Qingquan & Tang, Yi & Zhang, Yuduo & Li, Yi & Zhao, Qi & Huang, Chuyuan & Fang, Quan & Wang, Liancong & Jin, Hang, 2022. "Flame and shock wave evolution characteristics of methane explosion in a closed horizontal pipeline filled with a three-dimensional mesh porous material," Energy, Elsevier, vol. 260(C).
    13. Wu, Yang & Meng, Xiangbao & Zhang, Yansong & Shi, Lei & Wu, Qiyan & Liu, Li & Wang, Zhifeng & Liu, Jiqing & Yan, Ke & Wang, Tong, 2023. "Experimental study on the suppression of coal dust explosion by silica aerogel," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.